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FOREWORD

In connection with the widespread use of supersonic flying
craft, close attention has been given to problems associated with
aerodynamic and radliant heating in flight., Of particular importance
is the heat shlelding of the crew, of the structure and equipment,
the selection of structural materials, and the determination of the
thermal stresses in the structure.To solve these problems. it is
necessary first to determine the temperature of the exterior shield-
ing. This 1s the purpose of thils work.

In considering aerodynamic heat transfer, we took into con-
slderation the entire range of velocities and altitudes possible
during flight in the atmosphere. However, not all the problems
dealt with i1n this connection were given equal attention. This is
explained by the limited attention devoted to certain questions in
the scientific literature and by the fact that the work is Intended,
for the most part, for educational purposes.

In examining the problems of radiation heat transfer, primary
attention is given to emlission, since it is of great significance
from the standpoint of thermal balance in aerodynamic as well as in
radiant heating. ‘

In connection with the increasingly wide use of shielding
materials with low thermal conductivity, and also in connection
with the use of thick shielding in the case of intensive heating,
the present werk presents a method for determining the temperatures

-1 -
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of thin as well as thick shilelding. In additlon the criterion for
thin shielding 1s presented, as is a method for determining the thick-
ness of the required insulation.

The present work is intended for preliminary tentative cal-
culations; consequently, in the majority of cases we present approxti-
mation methods of calculation in order to obtaln a quick result. In
connection with the fact that we are pilrmarily concerned with edu-
catlonal purposes, we consider only the simplest design elements
(plate, shape, delta wing, cone, region of the critical point of
the forward blunt end of the body).

Although thils work takes into consideration a wide range of
velocities, 1t should be borne in mind that the accuracy of the cal-
culations with respect to heat transfer will decrease as the Mach
numbers lncrease, since such factors as dissocliation, recombina-
tion, and the development of the thickness of the boundary layer
can be calculated only with a relatively low degree of accuracy.

The radiation of the air behind the shock wave at high Mach numbers
may lead to greater heat transfer than in the case of aerodynamic
heat transfer and establishes the applicability limit of the above
methods for the determination of the temperature at the critical
point. The radiation of the air behind the shock wave is given only
qualitative consideration.

In this work it has not been our intention to examine methods
of heat shielding and consequently certain problems of heat trans-
fer closely related to measures of heat protectlon have not been
dealt with. Heat transfer in the case of porous cooling and sub-
limation 1s related to these questions. We have also not considered
heat transfer through multilayered shielding.

To better explain the complex methods of thermal calculations,

- 2 -
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this book presents numerical examples for which the initlal data

Jere arbltrarily adopted.
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SYMBOLS
constant; accomodation coefficient;

coefficient of thermal diffusivity, in m2/sec; speed of
sound, in m/sec; constant;

specific heat capacity, in kcal/kg-deg;

specific heat capaclty of gas at constant pressure, in
kcal/kg-deg;

local coefficient of aerodynamlc friction;

energy per unit time in kg-m/sec; total radiant energy
per unit surface, per unit time, in kg/sec-.m;

area, in m2;
welght, in kg;
acceleration of gravity, in m/secz;

flight altitude in m; ratio of displacement thicknesses
and momentum losses for an incompressible fluid;

Mach number of an undisturbed flow;
local Mach number;

Prandtl number;

pressure in undisturbed flow, in kg/me;

relative pressure at the surface, referred to the impact
pressure of undisturbed flow;

relative pressure at the surface, referred to local impact

pressure;
specific heat flow, in kcal/m2sec;

specific heat flow, developing as a result of aerodynamic
heating, in kcal/m®sec;

specific heat flow, developing as a result of aerodynamic
heating at the critical point, in kcal/mesec;
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Re
Re6
Rekr
Re*

I3

St

speclflic heat flow of radiant energy absorbed by a body,
in kcal/m2sec;

specific heat flow radiated by a body, in kcal/m2sec;

specific heat flow involved in the heating of a body, in
kcal/m3sec;

flow of heat removed as a result of the heat conduction
beyond the boundary of the body under consideration, referred
to 1 m@ of the outer surface of a body, in kcal/mesec;
specific heat flow absorbed by a body, in kcal/mesec;
specific heat flow of cooling, in kcal/mesec;

radius of surface curvature, in m;

Reynolds number;

local Reynolds number;

¢ritical Reynolds number;

Reynolds number corresponding to the determining temperature;
temperature recovery factor;

specific heat flow of solar radiation, in kcal/mgsec;

Stanton number;

proportionality factor for the Stanton number;

absolute temperature, in ©K;

temperature of an undisturbed flow, in OK;

temperature of the adiabatic wall, in °K;

temperature of the alr at the outer 1limit of the boundary
layer (local temperature), in °K;

temperature of the lnner structure, 1n °K;

temperature of the shielding, in OK;

temperature of the outer surface of the shielding, in oK;
temperature of the inner surface of the shielding, in °K;
determining temperature, in oK;

rate of recombilnation at the wall, in cm/sec;

velocity, in m/sec;
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local velocity at the limit of the boundary layer. in m/sec;
undisturbed flow velocity, 1in m/sec;

first cosmic velocity (circular velocity), in m/sec;
distance from the leading edge or the nose, 1In m;

relative coordinate from the nose or the leading edge;
coordinate normal to the surface, in m;

coordinate along the surface, perpendicular to the flow,
in m;

heat-transfer coefficient, in kcal/mesec-deg;

heat-transfer coefficient at the critical point of the
blunt nose, in kcal/m2sec-deg;

heat-transfer coefficient referred to increment in heat
content, in kg/m2sec;

equivalent coefficient of heat transfer, in kcal/mzsec-deg;

coefficient of the integral absorption of radiant energy;
the Blot criterion of similarity;

bulk weight, in kg/m3;

thickness of the boundary layer, in m;

thickness of the shielding, in m;

thickness of the displacement of the boundary layer, in m;
thickness of momentum loss of the boundary layer, in m;
coefficlent of integral radiation from a smooth surface;
coefficient of monochromatic radlation of wavelength X;

relative temperature difference along the thickness of the
shielding;

relative temperature;
half-angle of conic flare, in radians;
adiabatic exponent;

coefficient of thermal conductivity, 1n kcal/m-sec-deg;
wavelength;

wavelength of maximum intensity, in u;

coefficlent of viscosity, in kg-sec/ma;
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coefficient of viscosity 1in the case of the determining
temperature, in kg-sec/m2;

coeffliclent of kinematic viscosity, in m2/sec;

coefficlient of kinematic viscosity in the case of the
determining temperature, in m2/sec;

simllarity parameter for conic flows; relative coordinate;

alr density of the outer limit of the boundary layer, in
kg.sec2/m;

air density in undisturbed flow, in kg-secz/mu;

alr densigy &n the case of the determining temperature,
in kg-secc/m";

Stefan-Boltzmann constant, in kcal/m2sec-deg4;

time, 1n seconds;

Fourier criterion; the angle between the normal to the
surface of the body and the vertical, In radians; the
angle between the direction of flow and the tangent to
the surface of the wing, in radians;

coefficlent characterizing the distribution of velocitles
near the critical point; wing sweepback angle, 1in radians;

angle between the direction of the solar rays and the
normal to the surface, in degrees;

exponent.



Chapter 1
HEAT TRANSFER IN AERODYNAMIC HEATING

§ 1.1. HEAT FLOWS DEVELOPING IN FLIGHT AT THE SURFACE OF A BODY

In the case of constant air flow about any type of body, the
flow at its walls will have a velocity equal to zero. The kinetlc
energy of the flow 1in this instance 1s converted into heat and the
ailr at the wall 1s heated.

In the case of complete conversion of the kinetic energy of
the flow into thermal energy, the decelerated flow temperature

would be

reT {115 ),

However, with the conversion of kinetic energy into thermal
energy, a part of this energy 1s dissipated and the temperature of
the ailr at the adiabatic wall, 1.e., that part of the wall neither

absorbing nor radlating heat, will be:

T= (1 2L M3), (1.1)
where r is the temperature recovery factor
P T,—T; .
- To'——T:. (1'2)

The temperature Tr is called the recovery tempzrature or the
temperature of the adiabatic wall, since the temperature of the
latter willl actually equal Tr'

The value of the recovery factor depends in the main on the

structure of the boundary layer and on the physical properties of
- 8 -



the air which are determined by the Prandtl number

8uecp

Pros—=—=, (1.3)

a
where a 1s the coefficlent of thermal diffusivity.
The englneering calculations may be assumed 1n approximate terms
for the laminar boundary layer
ra=(Pr¥)’, (1.4)
for the turbulent boundary layer
ro==(Pre)'l) (1.5)
where the Prandtl number should correspond to the determining tem-
perature which may be determined from the formula given in the work
of Eckert [35]:
Fam 131 0,5 (T 1) 4 0,22(7,- - T3)- (1.6)
The introduction of the determining temperature produces great
differences 1n the temperature of the air along the thickness of
the boundary layer. It leads to a situation in which the physical
properties of the air (viscosity, density, and thermal conductivity)
along the thickness of the boundary layer are variable. In principle,
it 1s possible to solve problems of heat transfer without the
determining temperature by means of the corresponding integration
of the equations of the boundary layer. However, for a compressible
gas even in the case of a laminar boundary layer, it 1s necessary
to carry out the unwieldy numerical integration of two second-order
equations. A.D. Young [30] showed that the integration of the
equations for a laminar boundary layer of a compressible gas may
be substantially simplified, 1f the viscosity is represented in
the following form:
wes AT,
In this case we will obtaln results even in the form of formulas,
although admittedly these are quite cumbersome. However, use of the

-9 -



above formula for viscosity 1s possible only within a comparatively
narrow temperature range 1ln the boundary layer, since & is not a
constant. Actually, in the absolute temperature range from 300 to
SOOOK, W = 0,72, while 1n the temperature range from 1000 to EOOOOK,
w = 0,58,

In the presence of a turbulent boundary layer it 1s not possible
to obtain simplified solutions, even of this type. In connection
with the difficulty of solving boundary layer equations, the method
of the determining temperature 1s frultful. With this method we may
use the results of the solution of boundary layer equations for an
incompressible gas, assuming the physical properties of the air for
the determining temperature.

The value of the determining temperature depends not only on
the temperatures in Formula (1.6), but on the structure of the
boundary layer and on the Mach number. For example, G. Young and
E. Hansen proposed the following for the laminar boundary layer in
the Mach-number region from O to 5 [35]

T# 2Ty 40,68 (T —T15) +0,19(T, = 73),
while for Mach numbers from 5 to 10
T 07730587, + 0,?137£M’.

E. Eckert showed that it is possible to give a general formula
for the determining temperature (1.6) for the entire practical range
of Mach numbers. Eckert's verification of this formula for a laminar
boundary layer by means of the results based on an exact calculation
without the determining temperature and obtained in a computer by
Young and Hansen indlicated that in the range of Mach numbers from
0.2 to 22 Formula (1.6) leads to an error not exceeding 3% in the
determination of the frictional resistance, and consequently, in the
determination of heat transfer; moreover, in the majority of cases

- 10 -



(in 38 of 50) the error was less than 1% [35].

E. Eckert [35] in analyzing the investigations and experimental
data produced by other authors comes to the conclusion that Formula
(1.6) may also be used in the case of a turbulent boundary layer.

P. Monaghan [48] came to the same conclusion. Monaghan found on the
basls of theoretical investigations and an analysis of the experi-
mental data obtained with Mach numbers up to M = 8 that the deter-
mining temperature for a turbulent boundary layer may be the same
as that taken for a laminar boundary layer.

K. Erike [37) shows that the determining-temperature method
may be applied not only to laminar and turbulent boundary layers,
but also to dissoclated gas. It 1s true that he notes that the ap-
plication of the determining-temperature method is most convenient
for preliminary aerothermodynamic calculations. A more exact solution
could be obtained with the ald of computers.

As can be seen from Formula (1.6), the determining temperature
may be calculated when the recovery temperature Tr and the tem-
perature of the wall Tst are known, but these temperatures are un-
known. Consequently, the aerodynamlic heating in the case of steady-
state thermal processes should be calculated by the method of succes-
sive approximations, initially determining the Prandtl number ap-
proximately. In the case of nonsteady-state thermal process, as is
shown in § 4.1, the calculation may be carried out without succes-
sive approximations.

The dependences of the Prandtl number on the temperature accord-
ing to N.B. Vargaftik[25] and according to E. Van Dreist [5] are
given in Fig. 1.1. It 1s apparent from this figure that in the tem-
perature range of from O to 1400°C, the Prandtl number changes withii: a
relatively narrow range from 0.68 to 0.72. Taking the mean value

- 11 -



0.70, in accordance with Formulas (1.4) and (1.5), we obtain for the
calculation of the first approximation
r,=:0,83; r,=:0,89.

The specific flow of heat to the wall from the air heated in
the boundary layer will be expressed according to the formula of
Newton

gu==a(T,—T,), (1.7)
where als the heat-transfer coefficlent.

The values of the specific flows of heat wlll be determined in
kcal/mzsec. Consequently, the unlts of the heat-transfer coefficient
will be expressed in kcal/mzsec-deg.

In addition to the indicated gas-kinetic heat flow which heats
the body, the outslde surface of the body may be subject in flight
to the influence of radlant energy emitted by the body, the earth,
the moon, comets, and by the galaxy; only flows of heat coming from
the sun and the earth are of practical significance in flights about
the earth. The remalning heat flows are significant only in flights

in the vicinity of corresponding planets or in galactic flights.

Pr
072

' 1 1o 6 Bapeapmuny ~ 1

\ >
070
\\\ // o0 E. Baw-Apademy
’ N
026

’ 200 400 600 800 1000 1200 t°C
Flg. 1.1. Dependence of the Prandtl number

on the temperature for air. 1) According to
N.B. Vargaftilg 2) According to E. Van Dreist.

The specific heat flow of direct solar radlation absorbed by
the 1lrradlated surface

- 12 -



g.-=rScos, (1.8)
where S is the specific heat flow of solar radiation, normal to the
surface; ¥ is the angle between the direction of the solar rays and
the normal to the surface of the body; B 1s the absorption coeffi-
clent which depends on the material of the surface, its structure,
and temperature,

The speciflc heat flow of solar radlatlion without taking into
consideration the absorption and scattering of its atmosphere in an
earth orbit (see [34]) 1is S = 0.332 kcal/mgsec. At altitudes below
4O ¥m, S will be less than the indicated value and will depend on
the altitude and zenith distance of the sun, and also on the meteoro-
logical conditlons. At the surface when the sun 1is at its zenith,

S decreases by approximately 2 1/2.

The specific heat flow reflected from the surface of the earth
and from the clouds of solar rays 1s several times less than the
specific heat flow of direct solar radiation. At an altitude of 500 km
of the earth-sun line, in approximate terms

Tor == 0,016 (1-}-2cos 2) B. (1.9)

The speciflc heat flow of the earth's radlation will be even

less: at a height of 500 km it 1s approximately
q,=0,007 (1-}-2 cos ) 8. (1.10)

The heat flow of the reflected solar rays of the earth's radia-
tion decreases with altitude. At altitudes of several thousand kilo-
meters they may be disregarded.

The total specific heat flow absorbed by the body in flight will
be

e = b1, (l.ll)
where

o deida i da, (1.12)
- 13 -



The heat being absorbed by the body will influence the radia-
tion; 1t wlll heat the body and will be drawn beyond the 1limits of
the sectlon under consideratlion as a result of heat conduction.
The over-all heat balance when there is no cooling will be:

‘/;M =g+ ar + G- (1.13)

The specific radiation-heat flow

a==37Ten, (1.14)
where ¢ 1s the Stefan-Boltzmann constant and 1s equal to

¢ =13,6.1012 cal/meseCodegu;
e is the radliation coefficlent which depends on the material of the
surface, 1its structure and temperature. Information on the numerical
values of € 1is gilven in Chapter 2.

The specific heat flows 1lnvolved in the heating of the body
and withdrawn through the boundaries on the side depend on the tem-

perature gradlent and the thickness of the shielding at the surface
of the body (a'r/ay)St and on the thermal conductivity A:

N
-+ =hf - N
Juar T G+ ( oy )ﬂ

(1.15)
where y 1s the coordinate directed from the surface to the flow.

The thermal conductivity is seldom measured in kcal/m-hr.deg,
however, the introductlon of the hours as the unit of time does
does not correspond to the technical system of units and may be
Justified only 1in the case of constructions in which the thermal
processes last for hours and days. In the case of flying craft sub-
Ject to substantial aerodynamic heating, the length of the limiting
thermal processes 1s usually measured in seconds and minutes. Conse-
quently, the coefficient of thermal conductlivity 1n the glven work

will be measured in kcal/m-sec-.deg.

The temperature gradient at the surface of the body (BT/ay)st

- 14 -



in the general case should be determined by the Fourler equation [9]

W= L L) (129
where ¢ 1s the specific heat capacity of the shieldlng material; vy
1s 1ts bulk weilght.

The specific heat flow involved in the heating of the shield-

ing

3

should also be found in the gen;ral case with Eq. (1.16).

When there 1s a temperature gradient OT/0x or OT/dz, there will
arise in the shilelding heat flows perpendicular to the heat flows
described above. They will be proportional to A(JT/0x) or A(OT/dz)

and should also be determined in the general case with Eq. (1.16).

§ 1.2. HEAT-TRANSFER COEFFICIENT WITH FLOW ABOUT A FLAT PLATE AT
ZERO ANGLE OF ATTACK

Determination of the heat-transfer coefficlent at supersonic
speeds 1s a rather complex problem and at the present time we have
comparatively exact solutions only for a flat plate at zero angle
of attack, and that without taking into consideration the pressure
produced along the plate by a boundary layer whose thickness is in-
creasing. Problems with respect to determination of heat transfer
in the case of more complex flows can usually be reduced to those
of heat transfer for flat plates, making one or another assumptions.

The heat-transfer coefficient may be expressed in terms of the
dimensionless Stanton St number. The Stanton number 1s the similarity
criterion for heat transfer with forced motlion. Here

a =StyVie, . (1.17)

Frequently, 1n addition to the Stanton number, we also use the

dimensionless Nusselt number which is equal to

- 15 -
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Nu=-" (1.18)

moreover, the Nusselt number 1s related to the Stanton number in
the following way:
MNu.--StRe Pr, (1.19)

where Re 1s the Reynolds number

lec ::-.—}-/ft«
, (1.20)

The Stanton number is proportional to the local coefficient of
friction
St =8¢, (1.21)
moverover, the proportionality coefficlent s is a dimensionless
gquantity. At low veloclties and small temperature differences in
the boundary layer, s in the laminar boundary as well as in the

turbulent boundary layer is equal to (see [35])
o Lo (1.22)

To calculate the compressibllity of the flow 1n the case of
laminar boundary layers, the Prandtl number in Formula (1.22) should
be calculated for the determining temperature [35], 1i.e.,

s, (Dr¥) . (1.23)

In the case of a turbulent boundary layer, the use of Formula
(1.23) is less well founded; however, until other methods are developed
we may assume [35]

sy (Pr) 7, (1.24)

It should be noted that as a result of the fact that the Prandtl
number variles within a very narrow range, the range of the possible
changes in the coefficient s will also be narrow. Adopting as the
Prandtl number the new value Pr = 0.7, we will obtain:

s=:0,64.

- 16 -



Thils value may be used for the first-approximatlon calculatlon., If the
coefficient s 1s known, the calculatlon of the Stanton number is
reduced to the determination of the local coefficlent of friction.

For 1lncompressible flow in the case of a laminar boundary layer,

the local coefficient of friction may be expressed ([35], [33],

p. 119) in the following way:

o 0,004 1.2
¢ e ( 5)

In the case of a turbulent boundary layer, we may use the

following formula up to Re = 107 (see [481, [33], p. 425):

= 00592 1.26
f (Re)O,2 * ( )

The formula 1s in good agreement with experiments for values

10° < Re < 107 (see [35], [33], p. 433)

0,37
EE— 24 . 1 . 2
¢ (ig Rey>5¥ ( 7)

The above formulas may also be used in the case of compressible
flow, 1f the Reynolds number 1is calculated from the determining tem-
perature, using Formula (1.6). Here the coefficient ¢, 1o referred to
the physical parameters of the alr for the determining temperature,
1.e., to p* and u*. The Stanton number in Formula (1.17) 1is referred to
cpég for compressible flow it 1s necessary to calculate cp or the
determining temperature. If we consider the above, the
friction coefficlient referred to the physical properties of the air
at the 1limit of the boundary layer, will be:

e P
(/c;«"cj o5 ’ (1.28)

while the Stanton number
St-= s’*c;(ﬁ‘c'p,'pp,c,, 3
Substituting this expression in Formula (1.17), we obtain for
the local heat-transfer coefficient:

- 17 -



@ == gy EeGe Vi, (1.29)
If we take into conslderation Formulas (1.23), (1.24), (1.25),
(1.26), and (1.27), we will find the over-all heat-transfer coeffic-
lent${ here the heat-transfer coefficient willl be:
for the laminar boundary layer
23,26 (Re) i (PrE) T el 1y, (1.30)
for the turbulent boundary layer and Re < 107
a,=20,29 (Re*)™" (Pr#) eV, (1.31)
for the turbulent boundary and 10° < Re < 107
== 1,81 (Ig Re®) ™ (Drx) ™" a1/, (1.32)
The value of the density for the determining temperature may
be determined from the characteristic equation, taking into con-
sideration the fact that the pressure in the boundary layer does
not change:
v =T 1%, (1.33)
The Prandtl number in these formulas may be determined from the
graph given in Fig. 1.1. To determine the Reynolds number, it is
necessary to know the relation of the viscosity to the temperature.

For this we may use the formula (see [48])

T'h 2
i ke sec/m". (1.34)

p==1,49.107 -
This formula 1s thoroughly validated by experiments in the
temperature range of 100 to 2000°K. The coefficlent of kinematic
viscosity in the Reynolds number
v=p/p. (1.35)
The specific heat capacity of the air may be determined from
the graph given in Fig. 1.2 This graph is constructed from the data
of N.V. vVargaftik [25] and E. Eckert [35].
For flying craft with cosmic and near-cosmic velocities the

thermal regime may be of the essence at altitudes where due to the
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great rarefaction of the air, boundary layer theory 1is not applicable.
This 1s the reglon of free-molecular flow; 1t is characterized’

by the fact that the mean molecular free path (before collislon) be-
comes greater than the dimensions of the body. In such flow, there

is no boundary layer. The relation of the mean molecular free path

to the linear dimenslon of the body 1s called the Knudsen number.

The region of the free-molecular flow 1s characterized by the Knudsen
number (see [50])

kn=1/ 2« M
Kn= 2" Re>10. (1.36)
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Fig. 1.2. Dependence of the specific
heat capaclty of the air on the tem-
perature. 1) According to E. Eckert;
2) According to N.V. Vargaftik.

The heat transfer of the free-molecular flow depends on the
relative amount of energy transmitted by the molecules to the air
against which they collide. This relative energy is called the accom-
odation coefficient, the value of which 1s influenced to a certain
extent by the materiél and the structure of the surface. The accom-
odation coefficient values are close to unity; Table 1.1 gives the
value of the accomodation factor for certain materials [39]. A good
apreement between the theoretical heat transfer and the experimental

heat transfer 1s obtained if we assume A = 0.9 [23].
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TABLE 1.1
Accomodation Coefficients for Certain Materials

Kos¢du- Kosdpdu-
LHEHT AKKO- HHENT aKKO-
Marepnaa MOA2UMN Marepuaa MORSIIHN
1 2 A A
Anomuunit  mavimunoft | 0,95+0,97 Nutas craab MawmnHoA 0,87+0,88
6paorkn 3 o6padorku
Anovunuit Tpasaennity ] 0,89+-0,97 7 Jlutas ctaab tpasaenas | 0,69+0,96
Anomunuit noauposau. | 0,87+-0,95 Jlurar craas nogupo- | 0,87+0,93
T 93 ERTTEY | ‘g

1) Material; 2) accomodation coefficient A; 3) machine-
worked aluminum; 4) etched aluminum; 5) polished
aluminum; 6) machine-worked lithium steel; 7) etched
l1ithium steel; 8) polished lithium steel.

The heat transfer of the free-molecular flow may also be deter-
mined from Formulas (1.1) and (1.7); we must, however, take into
consideratlion the fact that the temperature recovery factor in free-
molecular flow increases and becomes greater than unity. Theoreti-
cally, in the case of free-molecular flow past a flat plate, the
rccovery factor equals (see [23])

Fog = T(6: 1,17,
Experiments confirm the theoretical value of the recovery

factor for the region 4 > Kn 4 Re > 1. For KnAJ Re > 4, the experi-

mental values are higher than the theoretical values and reach rsm
= 1.4 (see [23]).

The heat-transfer coefficlent may be determined from Formula
(1.17), while the Stanton number for free-molecular flow past a flat
plate at zero angle of attack will be (see [23]):

Sty 5= O, 2124/, (1.37)
where A is the accomodation coefficient, while £ is the ratio of the
velocity of light to the most probable molecular velocity. The value

of £ may be expressed in terms of the Mach number (see [23]):

M1/ 1, 1.38
4 \11/2 . (1.38)
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Substituting Fermulas (1.137) and (1.38) in Formula (1.17), we

obtain:
o, = 0,342ave, 4]V «. (1.39)

It 1s apparent from this formula that the velocity of the flight
has no influence on the heat-transfer coefficient in free-molecular
flow while 1f we take into consideration the small changes in
a, K, cp, and A, the density of the ailr 1s the basic factor deter-
mining the heat-transfer coefficilent.

In free~molecular flow there will be no shock wave; however,
due to the collisions of the molecules with the surface these mole-
cules may be dissociated and ionized. Due to the great length of
the molecular free path in free-molecular flow, at great hyper-
sonlc veloclitles an extensive lonilzation zone developes in front
of the moving body.

For the range of Knudsen numbers [50]

0,01 <Kn<0,1

the flow will have a boundary layer; however, the veloclty at the
surface will not equal zero., This is This 1s called slippage flow.
The sudden increase in the veloclity in the boundary layer with
sllppage alsoproduces a sudden increase in the temperature. The
theoretlical determination of heat transfer in the case of flow with
slippageis quite complex and extremely unreliable [50]. A compari-
son of experimental data on heat transfer with data calculated on
the basis of the theory of constant flow (continuum) with a laminar

boundary layer indlicates that the heat transfer in the case of flow

with slippage 1s somewhat lower than the heat transfer obtained from

formulas for continuum flow [50].
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§ 1.3. THE HEAT-TRANSFER COEFFICIENT IN THE CASE OF FLOW PAST A
PLATE, A WING PROFILE, AND A BODY OF REVOLUTION

At small angles of attack for a flat plate, the heat transfer
can be determined from formulas corresponding to the plate with a
zero angle of attack, taking into consideration the local values
of the veloclty, the density, and the temperature of the air at the
1imit of the boundary layer. It i1s the lower surface that is of
greatest signiflicance from the standpoint of heat shielding, since

the highest temperatures are attained on this surface.

Fig. 1.3. Diagram of flow about the nose
of the profile. 1) Shock wave.

In the case of flow about the lower surface ol a plate with a
positive angle of incidence, an oblique compression wave develops on
the leading edge. Let us consider the more general case of a wing
profile, when the tangent to the profile at the investigated point
A forms the angle ¢ with the direction of the flow on the lower
surface (see Fig. 1.3). In this case the local pressure ps; at point
A on the surface of the wing may be represented according to Buze-

man in the following way (see [29]:

;._'PC_P. =cl?+‘g?’+ca?'+ .. (1.40)
?'. -»

We are frequently restricted to two terms of this expansion.
This is entirely permissible, if the Mach numbers are not substan-
tially greater than 5-6. At great hypersonic velocities the neglect-
ing of the third term may produce a substantial error. As an example,
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Fig. 1.4 gives the error as a functlion of M, when ¢ = 50. As can
be seen from the curve, when M, > 20, the error may be greater than
20%. Consequently we introduce the values of the factors for a
trinomial expansion.

If we assume that the adiabatic exponent for air 1is 1.4, for
the coefficients Cys Coy and c3 we obtaln the following expression,

if ¢ 1is determined in radians (see [29]):

e =2(ML—1)""h; (1.41)
6= g (ML —2)*+ 1,4ML) (ML~ 1)% (1.42)

¢y=(0,36M% —1,493M% - 3,6M% — 2M % +1,33) (ML — 1),
(1.43)

Here the coefficient c3 reflects the influence of the shock
wave. When the flow expands (when there is no shock wave), the
values of the coefficients ) and o will remain the same, while
coefficlent 03 1s somewhat changed and can be expressed in the follow-
ing way:

€y=(0,4M% — 1,813M% + 4M% — M2 4 1,33) (ML — 1), (1.44)

In the case of flow expansion, ¢ 1s negative. If the flow ex-
pansion precedes the shock wave, as for example in the case of flow
about the rear section of the profile, the coefficient cé is also
calculated from Formula (1.44), but a term expressing the influence
of the shock wave is added to the expansion:

%)
where P 1s the angle of 1lnclination of the surface in the forward
section 1in front of the shock wave, and
Cy=cy—Cyme — (0,04M% — 0,32M% 4 0,4M%) (M2 — 1), (1.45)

Flgure 1.5 presents a graph for the determination of the coef-

ficients Cys Co» c3, and cé as functions of the M, number in undis-

turbed flow.
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Having determined the pressure on the lower surface of the plate
or on the nose of the wing profile by means of Formula (1.40), we
can determine the air density at this same surface with the Hugonlot
equation (see [29]):

LRSI Y. Ly (1.46)

4%y,
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1
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Fig 1.4. Relative error if we neglect
the third term of the expansion in
series of the relative pressure values.
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Fig. 1.5. Coefficients of the expansion in
series of relative pressure as a function of Mw.

If there is no shock wave (for example, for the upper surface
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of a plate or, in certain cases for the profile). the density must
be determined from the equatlon of the adiabatic curve:

Is

plea=(pifp.) " =(p|p_ )", (1.47)

If the flow expands behind the shock wave, we initially deter-
mine the densify behind the shock wave from Formula (1.46), and
then by means of the equation of the adiabatilc curve we determine
the density at the surface being investigated.

The air temperature at the limilt of the boundary layer willl be
found from the characteristic equation:

To|Ta=(p.) (p.I0s)- (1.48)

Making use of the fact that the flow-retardation temperature
does not change even in the presence of compression waves, we ob-

tain:

1".(1 M) =T (1425 M)

Taking into consideration that « = 1.4, we find:

ME=5 [(T-/T) (1+0,2M%) —1]. (1.49)

Formula (1.40) and the values of the coefficients in this for-
mula correspond to a wing of infinite span. However, this formula
can also be used in the determination of the pressure on a straight
wing of finite span for that part located outslide the Mach end cones.

At the ends of the wing the pressure drops linearly along the
span; moreover, at the very end, the excess pressure equals zero.
Hence, it 1is not difficult to determine the pressure at any point
inside the Mach end cones.

In the case of aerodynamic heating the case in which the lead-
ing edge of the delta wing becomes "supersonic" is of particular in-
terest; 1n this case the excess pressure is greater than on a wing
with a "subsonic" leading edge. 4

- 25 -



For a very thin wing (a plate), the excess pressure on the sec-
tion lying outside of the Mach cone emanating from the peak of the

triangle forming the wing will be (see [26], [27]):
Ear——————
Prs VMl Jiagy
where X 1s the sweepback angle of the leading edge; for the section
of the wing lying inside the Mach cone, the pressure will be less

and expressed as:

- 2% 2 t 1—- (M3 ~ 1) (2/xp
Pxa=——mreee——— l—ﬁafCSin g_l_ hod
* VMf,—l—tg't’l[ K V=TV 1—agyeEe |’

where x 1is the coordinate along the flow, while z 1s the coordinate
perpendicular to the plane of symmetry (the origin of the coordi-
nates 1s at the apex of the triangle).

For a wing of infinite span, with a very thin profile (a plate),

the excess pressure according to the linearized theory is

P
7O
The greatest heat flows are developed on a delta wing in the

section lying outside of the Mach cone. The pressure on this sec-

tion of the wing may be determined from the formula

| 74 T

; = Uk wy
VR S

while calculating the value of ﬁkw from Formula (1.40).

It should be noted that as the Mach number increases, the cor-
rection factor approaches unity.

Thus, when M = 5 and X = 600, this factor equals 1.07, while
when M = 10, it equals 1.015. The latter formula may alsoc be used
for the determination of the pressure on a sweptback wing, i.e., on
that sectlon of it which lles outside the central Mach cone.

The formulas presented here together with the formulas given
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in § 1.2 enable us to find the heat-transfer coefficient on a flat
plate as well as on a thin wing, if the angles of incidence are rela-
tively small,

In § 3.1 we give an example of the determination of the heat-
transfer coefficlent on the profile of a wing.

It should be noted that the presence of pressure and tempera-
ture gradients on the surface (for example, on a curvilinear profile)
increases the error in the determination of the heat-transfer coef-
ficlent; moreover, thls error Increases as the Mach number increases.

The heat transfer on a cylindrical surface with an axls parallel
to the flow may be determined from the formulas for a flat plate,
if the thickness of the boundary layer 1is substantlally less than
the curvature radius of the surface. The applicability criterion for
the theory of a flat plate for a cylindrical surface may be expressed
in the following inequalitiles:

for a laminar boundary layer x/R < 0.02 Rel/z; (1.50);

for a turbulent boundary layer x/R < 0.3 Rel/s, (1.51).

The heat-transfer formulas for a flat plate may also be used
for a cone; however, the local values of Mé, Pgs and Té should corre-
spond to the flow past the cone and the conlical nature of the flow
should be taken into consideration.

Because of the conical surface not all of the gas streams
at the surface have 1dentical lengths of contact with the surface.
The streams beginning at the point of the nose have the greatest
lengths of contact with the surface. Other streams are shorter, since
they approach the surface at some distance from the point of the
nose. Thus, while determining the heat transfer or the frictional
coefficient at a given point of the cone, it should be borne in mind
that the mean length at which particles of gas in the boundary layer
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are subject to the influence of viscosity forces will be less than
the length of the generatrix.

Consequently, in using the heat-transfer formulas for a flat
plate in the determination of the heat transfer on a cone, we should
find the Reynolds number from the given length xpr which depends on
the length of the generatrix X and the structure of the boundary
layer. In the case of laminar boundary layers xpr/x = 1/3; in the
case of' turbulent boundary layers xpr/x = 1/2 (see [5], [30]).

To deterinine the parameters of the flow at the surface of the
cone, let us introduce the similarity parameter for conical flows

E=0 M., (1.52)
where ok is in radians.

Using the denotations of Fig. 1.6, according to N.F. Krasnov
(f10), p. 258), we will have:

Pe=2,09 (1+0,143[") 8, (1.53)
where
;lg Fl'l ~Pe )
—_y Y2 (1 -54)

2'. -

1 ) Cvauon
ynromuewnun
To determine the remaining local
parameters of the flow at the 1limit

of the boundary layer, it 1s neces-

sary to take into consideration the
nonisotropic change in the flow with
the transition through the compres-
sion wave; these changes depend on
Fig. 1.6. Diagram of the sym- the angle of inclination 3, of the
bols of the parameters of the

flow about the cone. 1) Com- surface of the compression wave and
pression wave; 2) cone.

M, The angle of inclination of the

compression wave according to N.F. Krasnov ([10], ». 249), is deter-
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mined from the following formula
8,/9,=1,0934-0,06 (7 — )", (1.55)
Formula (1.53) and (1.55) are approximations of the exact solu-
tion and may be used with a sufficiently high accuracy for 0.5 < € < o,
M, > 2.5, and 9, < 30°.
If we know the angle of 1nclination for the compresslon wave,
we can determine the relative pressure behind the discontinuity ([10],
p. 37):
plp. =2 (TMLsin*8,—1). (1.56)

The density of the alr behind the compression wave 1s found from

the Hugonlot equation

P __ Pelpa —!
n'~1+5mﬂ.+§' (1.57)

The transition to the density of the alr at the surface of the
cone can be accomplished by means of the equation of the adlabatic

curve:

ofec=(Pe/pe) ™ =[(£/p.) (PPN (1.58)
The quantity p(s/poo in this equation can be determined from
Formula (1.54), using elementary transformations of this value; here

we will obtain:

b=+ L LM, (159

The temperature T6 at the limit of the boundary layer of the
cone and the local My number can be determined from Formulas (1.48)
and (1.49), respectively.

In the case of a pointed body of revolution with a curvilinear
generatrix, the flow parameters at the point may be determined from
the formulas for a cone having an angle ¥, (see Fig. 1.7). At other

points on the nose surface, the flow parameters can also be found
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approximately from the formulas for
a cone wilth an angle ok which 1s
equal to the angle of inclination
of the nose surface at the given

point (see Fig 1.7).

§ 1.4. HEAT-TRANSFER COEFFICIENTS IN
THE CASE OF FLOW ABOUT FRONTAL
AREAS

The forward noses of bodies and

Fig. 1.7. Diagram of denota- the leading edges of the lifting sur-

tlons for the geometrilc char-
acteristics of a pointed body
of revolution. 1) Compression
wave.

faces are related to the frontal sur-
faces. Heat transfer in the case of
flow about frontal surfaces may be
determined from the formulas for a plate, if we take into considera-
tion the local characteristics of the flow.

With flow about rounded noses or leading edges, the blunt sec-
tion of the nose in the region of the critical point is streamlined
by subsonic flow (Fig. 1.8). On the basis of experiments [5] it was
determined that the veloclty of the flow along the meridional cross
section 1s proportional to the relative distance from the critical
point:

Vi=xV.x|R. (1.60)
The geometric values of x and R are given in Fig. 1.8. The value
of the coefficient X depends on the shape of the frontal surface
and the flight Mach number. In the case of incompressible flow
(Mw = 0), X = 1.5 for a spherical nose, and for a cylindrical lead-
ing edge X = 2; when M_ increases, the value of X decreases and
may be determined for a spherical nose from the formula of M.
Romig [20]:

1=0,8M2"*2, (1.61)
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Thls formula 1s used for M_ > 1.

Because of the large negative pressure gradient and the low
Reynolds numbers, the boundary layer must be laminar in the region
of the critical frontal-surface point. The Reynolds number for the
determining temperature, if we take into account Formula (1.60),
will be

Re®* = xV/)/V* =y V.x?v*R.

Substituting thils value of the Reynolds number into Formula
(1.30), and also substituting the value of V; from Formula (1.60),
we will obtaln the expression for the heat-transfer coefficient in

the region of the critical point of the nose:

ag= APV RV (uay%)' 2 (Pre)~h o, (1.62)
Here the constant A is a function of nose shape. Using the cor-
responding numerical values given by E. Van Dreist [5], we may as-
sume the following:
7.5
5.6

for a spherical nose ....ce0veea. e eesaeas A

]

for a circular cylindrical nose ........ce... A

The determlining temperature at the critical point may be deter-
mined from the formulas for the deceleration temperature and from
Formula (1.6); taking into consideration the fact that in the case
under consideration Ts = To, where

%=1

To=T.(1+3 ML).

we get:
T ma Ty— 0,5 (Tg—Ter) = 0,22(1—1) (Ty—T.).

To determine the air density at the body surface from the deter-
mining temperature, we first determlne the pressure behind the com-
pression wave in the region of the critical point. From this pres-
sure, we find the density of the air behind the compression wave
and then from the adiabatic equation and the characteristic equation
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we make the transition to the density of the air in the case of the
determining temperature.

For a spherical or straight cylindrical nose, the pressure be-
hind the compression wave may be found from Formula (1.56), if we
assume that 05 = 90°. The density Ps behind the compression wave 1is
determined from the Hugoniot equation (1.57). The transition from
thls density to the density py at the surface can be made by means
of the adlabatic equation (1.58). The sought value of the air density
for the determining temperature may be found from the characteristic
equation:

P*loc={pe/pc) (o*Ipa) = (psfpc) (T/T*®).

In determining the heat transfer on the leading edge of the wing,
it should be borne in mind that the sweepback of the wing decreases
heat transfer. In approximate terms, this decrease in the heat trans-
fer may be determined from Fig. 1.9 (see [24]). In selecting the
sweepback, it should be borne in mind that a very large sweepback

(greater than 700) decreases the critical Reynolds number.
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Fig. 1.8. Diagram of flow about Fig. 1.9. Influence of the sweep-

a round nose. 1) Compression back of the wing on the heat trans-

wave; 2) zone of subsonic flow. fer at the critical point of the
leading edge. 1) (a with sweepback)/
/(a without sweepback); 2) sweep-
back, deg.
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If a rounded nose 1s streamlined by a laminar boundary layer,
the heat transfer at the critical point will be at its maximum. How-
ever, 1f the boundary layer at the nose becomes turbulent, the maxi-
mum heat transfer will be 1n the vicinity of the point with the local

number My = 1 [21].

§ 1.5. FACTORS INFLUENCING THE TRANSITION FROM A LAMINAR BOUNDARY
LAYER TO A TURBULENT BOUNDARY LAYER

The structure of the flow in the boundary layer may be laminar
or turbulent. In the case of a laminar boundary layer, the frictional
reslstance 1s substantially less than in the case of a turbulent
boundary layer. The decrease in the friction of the laminar boundary
layer decreases the heat transfer, and consequently, the temperature
of the surface also.

As an example Fig. 1.10 gives steady-state temperatures of the
wing surface iIn the case of laminar and turbulent boundary layers
when M = 5. It is apparent from the graph that in the case of the
laminar boundary layer, the temperature of the surface is 200 to
235° lower than 1in the case of a turbulent boundary layer. At higher
values of M, the temperature drop across the surface in the case
of a laminar boundary layer will be even greater.

Thermal shielding of the structure is one of the most effective
methods of ensuring a laminar structure for the boundary layer. The
laminarization of the boundary layer also decreases the frictional
resistance and, by the same token, decreases the welght of the englne,

If there are no factors producing turbulence in the nose sec-
tion of a streamlined body, the nose section will generally be stream-
lined by a laminar boundary layer. The transition from a lamlnar
boundary layer to a turbulent boundary layer at subsonic flight velo-

clties depends on the Reynolds number, and on a flat plate with a
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zero angle of inclidence, this transition generally takes place at
= 5.10°
Re,,, = 5-107 [33].
At supersonic flight velocities, as experiment shows, the
boundary layer becomes turbulent at higher Reynolds numbers.

The cause of turbulence in a

R
900
N : boundary layer is the instability of
- !
mmT* -m<___-_~ the laminar boundary layer at high
*700 _— Reynolds numbers. In connection with
600 \\<::-- this, the random velocity pulsations
\h__
5 in the boundary layer are not at-
R T N T R T
3) 10000 wpuine tenuated but are developed and cause

Fig 1.10. Temperature of a
wing surface, with aerodynamic
heating. 1) Turbulent boundary
layer; 2; laminar boundary
layer; 3) wing chord; M = 5,
H=30 km, o = 109, € = 0.8,

¢ = 0.03.

the turbulence of the boundary layer,
Time 1s required to develop the turbu-

lence and the disturbances, and con-

it

sequently, the Reynolds number for
the initial turbulence 1is greater than the Reynolds number for the
initial steady-state motion.

The source of the disturbing pulses is usually the turbulence
of the exterior flow, roughness, undulation, and other disruptions
of smooth flow about the surface. By decreasing the disturbing
pulses, we lncrease the time required for the development of the
turbulence, and consequently, increase the critical Reynolds number
for the transition from a laminar to a turbulent boundary layer.
For example, by decreasing the turbulence of the flow through the
use of damplng grids we succeeded in obtaining a critical Reynolds
number of Rekr = 3°106 in addition to the usual value 5-105 [33] on
a flat plate at subsonle velocities.

Although 1t might have been assumed that the viscoslty forces
in the boundary layer would be a stabilizing factor, in reality they
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reduce the stability of the laminar motion. In this a basic role
1s played by the nature of the change in the veloclty through the
thickness of the boundary layer; in the final analysis it 1s the
nature of this change which 1s determined by the viscosity forces.

If the wall cools the boundary layer, for example, by means of
1ts heat capacity or radiation, the density of the air at the wall
1s increased and, by the same token, the kinetic energy referred to
the volume 1s increased. This Iincreases the stabllity of the boundary
layer.

Figure 1.11 illustrates the nature of the change in the tempera-
ture and the density of the air through the thickness of the boundary
layer. Curves MN'P' and AB'C' correspond to the adlabatic wall,
while curves MNP and ABC correspond to the wall which 1s cooling
the boundary layer. In the section BC, the density 1s Increased and

this increases the stablility of the boundary layer.

95

8'[(8 )
(4 ¢ o
Pr fc‘l f

Fig. 1.11. Temperature distribution and air den-
sity through the thickness of the boundary layer.

With supersonic velocitlies and real walls there is always heat
transfer from the boundary layer, although this 1s the result of the
radiation of the wall. Consequently, the critical Reynolds numbers
at supersonic velocities are substantially greater than the critical
Reynolds numbers of the subsonic section.

L. Lees [47) showed theoretically that by cooling a wall stream-
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lined by flow, we can completely stabilize the boundary layer of
the supersonic flow, 1l.e., the critical Reynolds numbers may be
made higher than those used in practice. In these cases the practi-
cal criterion of stabillty will not be the Reynolds number, but the
relative wall temperature Tst/Té or Tst/Tr'

E. Van Drelst calculated the required relative temperatures of
the wall for total stabillization of the boundary layer at various
Mach numbers [52].

Filgure 1.12 shows a graph of the stability limits according to
E. Van Dreist: the regions within the curves B, C, and D correspond
to the laminar boundary layer [5]. The ratio of the ordinates of the
curves B, C, and D tothe ordinate of the curve A characterizes the

degrce of requlred cooling for total stabilization of the boundary

layer.
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Flg. 1.12, Limits of the total stabili-
zation of the boundary layer according
to E. Van Dreist. 1) Cone; 2) plate;

3) in flight; 4) in a tube; 5) laminar
boundary layer.

The region above the stabllity curves do not necessarily cor-
respond to the turbulent boundary layer. For these reglons the transi-
tion from the laminar boundary layer to a turbulent boundary layer
will be determined by the Reynolds number.

Notwithstanding the great number of theoretical investigations
of boundary-layer stability, the mechanism of the transition of a
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laminar boundary layer into a turbulent boundary layer has not been
completely discovered as yet. As a result, the determination of the

critical Reynolds numbers by theoretical means 1s not yet possible,

Re-10-0 The experimental data have not been
6

5 adequately systematized; moreover,

1

‘= SO ] there 1s a great divergence in the
3 %haqggjgz T result of various experiments. This
2 -

; J [~o 1s explained by the various condi-

0 008 018 024 O%2

Typbynenmuocme & %o tions under which experiments have

L) exapoomu nomoxa
Fig. 1.13. The influence of been conducted and, in particular, by
flow turbulence on the criti-
cal Reynolds number of a flat
plate at subsonic velocities.
1) Turbulent region; 2) tran-
sition region; 3) laminar re-
gion; 4) turbulence in % of
flow veloclty.

the fact that the flow turbulence,
the roughness of the models, and the
pressure gradient are not considered
in many of the experiments.

The extent of turbulence can be seen from the experiments on
the determination of the critical Reynolds numbers on a plate when
M < 1 [12]. In these experiments the flow turbulence was changed
and the formation of a temperature gradient was excluded. The re-
sults of these experiments are given in Fig. 1.13, whence it 1is
apparent that depending on the magnitude of the turbulence, the
eritical Reynolds number may change within a wide range. We should
also note the fact that with a turbulence of 0.08%, Rekr = 3-106 1s
almost reached; this 1s six times greater than the critical Reynolds
number ordinarily assumed for a plate 1n a subsonic region.

We should also devote some attention to the experiments carried
out in order to determine the critical Reynolds numbers on the cone,
saild experiments carried out by E. Van Dreist in a wind tunnel [53]. The
cone being tested was cooled from within by means of 1iquid and gaseous

nitrogen; in this manner it was possible to determine the critical
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Reynolds numbers for varlious degrees of cooling. The test results are
presented in Fig. 1.14., Curves A, B, and C correspond to the limits of
total stability (see Fig. 1.12). Curves A', B!, and C', passed through
the experimental points, represent the limits above which the boundary
layer becomes turbulent.
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Fig. 1.14. Limits of stability for the boundary,
in accordance with experiments carried out on a
cone be cooled in a wind tunnel. 1) My = 2.9;

Reé/meter = 2.13-107; 2) Mg = 2.7; Reé/meter =
2.4:107; 3) My = 3.65; Res/meter = 1.97-107;
4) insulated walls; A) total stability.

We should note the fact that the Reynolds numbers for the experi-
mental polnts shown 1n Fig; 1.14 correspond to the end of the transi-
tion (buffer) zone between the laminar boundary layer and the turbulent
layer. In accordance with measurements of wall temperatures in the des-
eribed experiment, the difference in Reynolds numbers between the begin-
ning and the end of this transition amounts approximately to 2-106.
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For a comparison against other experiments, curves A', B!', and C!
have been constructed agaln in Fig. 1.15, where M; has been selected
as the argument, and the degree of wall cooling — characterized by the
ratio Tst/Tr — has been chosen as the paramenter. For an adiabatic wall
Tst/Tr = 1; in the case of wall cooling, Tst/Tr { 1. The cooling of the

surface increases the critical Reynolds numbers, particularly for Ms < 3.
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Fig. 1.15. Critical Reynolds numbers for
the transition from the lamlnar to the
turbulent boundary layer, according to
experiments carried out both in a wind
tunnel and in flight. 1) Beginning of
transition; 2) end of transition;

3) cones; 4) V-2 rocket; 5) Viking 10
rocket; 6) plate; 7) solids of revolu-
tions; 8) in flight; 9) in wind tunnel.

In Fig. 1.15 the experimental points obtained during flight tests
of cones and rockets have been plotted, as have the experimental points
obtained in tests of plates and solids of revolution inwind tunnels [44],
[22]. The values of the critical Reynolds numbers, obtained in these ex-
periments, show significant scattering, but on the average (for the end
of the transition) are close to the critical Reynolds numbers obtained
by E. Van Drelst (see the curve for Tst/Tr =1).

The factors responsible for this divergence between various
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experiments cannot be ascertalned with a sufficlent degree of accuracy;
however, 1t should be pointed out that the magnitude of the critical
Reynolds number determined during the experiment can, in addition to the
factors indicated above, be affected by the method employed to deter-
mine the beginning and the end of the transition from the laminar to
the turbulent boundary layer: As was pointed out above, the turbulence
of the stream has a significant effect on the critical Reynolds numbers.
In the experiments used for the preparation of Fig: 1.15, the turbu-
lence of the air varlied, and is completely unknown for a number of cases.
For M(5 > 2 in the case of Tst/Tr = 1, 1t can be assumed, on the

average, that the beginning of the translition occurs at Re6 = 1.5-106,

and that the end of the transition takes place at Reg = 3.5-106. The
last value corresponds to the Van Drelst curve for M > 3:0. The dif-
ference between the above-~lndlicated Reynolds numbers corresponds to the
difference obtained in Van Drelst's experments [53]:

Note should be taken of the fact that the critlcal Reynolds num-
bers for plates and solids of revolution, according to the cited ex-
periments, show no pronounced divergence and can therefore, in approx-
imate terms, be assumed to be ldentical.

Very few experimental data with respect to the critical Reynolds
numbers are presented in the literature for the case of M ) 4. The fol-
lowing experiments might be cited. In the GALCIT (USA) [Guggenheim Air-
onautical Laboratory, California Institute of Technology] wind tunnel.
it was found that in the case of M = 5.8 the laminar boundary layer on
a plate 1s preserved to Reynolds numbers of 5.5-106. In thls case, the
laminar boundary layer was extremely stable [8]. In flight tests (No. 27)
of the V-2 rocket 1t was found that at M(5 = 4,2 the beginning of the
transition from the laminar to the turbulent boundary layer takes place
at Re, = 2.5-10° L44].
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M. Bertman found in experiments with c¢ylindrical bodies in a
wind tunnel at M = 6.9 that the critical Reynolds number may range from

6 to 4.5'106, depending on the thickness of the leading edge; in

1.2.10
this case, with an increase in the thickness of the leading edge the
critical Reynolds number increases. The above-mentioned critical
Reynolds number of 4.5-106 corresponds to the Reynolds number calcu-~
lated on the basis of the leadlng-edge thickness and is equal to 3-104
[38].

The above— enumerated experiments at M > 4 demonstrate that with
great M(ach) numbers, the critical Reynolds numbers do not diminish
and lie approximately within the same range as in the case of M 4;
therefore, for M ) 4 the same critical Reynolds numbers can be employed
as in the case of M < 4.

In the case of surface cooling, i.e., for Tst/Tr { 1, the critical
Reynolds numbers Reg will increase as a result of the reduction in vis-
cosity and the increase in density at the surface of the wallj In approx
imate terms, 1t may be assumed that the critical Reynolds numbers are
inversely proportional to Tst/Tr' This is completely confirmed by the
Van Dreist experiments for the case of M ) 3.5, said experiment shown
in Flg. 1.15., For M { 3.5 the effect of cooling will be more pronounced,
but the coollng itself, caused by thermal radlation, will not be great.

In the case of great M(ach) numbers, the quantity Tst/Tr can be
substantially reduced and in thils connection we can anticipate a pro-
nounced increase in the critical Reynolds number. However, 1n actual
fact, with the cooling of the boundary layer the displacement thickness
of the boundary layer dimlnishes and at a certaln cooling ratlio the re-
duced dilsplacement thickness may become close to the helght of the
roughness protuberances. In thls case, any further cooling of the bound-

ary layer willl not only fall to increase the critical Reynolds number
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but willl actually cause 1t to drop, since the roughness is one of the
significant factors resulting in the instablility of the boundary layer,
particularly i1f the roughness exceeds the displacement thickness. This
phenomenon may be referred to as the reversal of the cooling effect.
The presence of a pressure gradient along the flow has a pro-
nounced effect on the critical Reynolds number: in the case of a pos-
itive pressure gradlent, the critical Reynolds numbers diminish,
whereas 1n the case of a negative pressure gradient, they lincrease.
With a negative pressure gradient the followlng pressure is exerted on

an elementary portion of ailr having a volume dxdydz
dpy
——d; dxdydz.

which accelerates the motion of this portion of air. The decelerating

force of friction, acting on this same portion of air, will be:

-a%-(p _';7") dxdydz.

./ .

-d;=l. 113”“”””5@?ﬂ§T’47 The negative pressure gradient coun-
”;;E;F[d %w;;;:r"/ teracts the decelerating effect of the vis-
02 el ﬁtﬁﬂno - cosity forces, as a result of which the sta-

a4 =g A billity of the boundary layer 1is lncreased.
7 ‘ In the case of supersonic velocities,

o 02 04 06 08 X significant negative pressure gradients are
I ~— formed on certaln types of wing profiles and

Flg. 1.16. Distribution nose-parts of airframes, and these gradients

of pressure over the .
lenticular profile of a

Re = 6.4:10°; 1) Upper
surface; 2) lower sur- sure distribution over the lentlcular pro-
face.

enhance the stabllity of the boundary layer.

Figure 1.16 shows, as an example, the pres-

file of a wing at M = 2.13 [31]. We can see
from the cited graph that with small angles of attack the negative
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gradient covers almost the entire cord of the profile.

The influence that the pressure gradlent exerts on the critical
Reynolds number can be determined in approximate terms on the basis of
the kilnetlc-energy balance of the boundary layer. To simplify the der-
ivation of the corresponding relatlionships, we will assume that the
velocity of the flow and the pressure gradient along the surface are
constant, which 1s close to the truth for thin profiles in the case of
small angles of attack, as well as 1n the case of elongated nose sec-
tions.

We choose the displacement thickness 6* as the parameter which
characterizes the thickness of the boundary layer in the case of a pres-
sure gradient; The energy lntroduced into the boundary layer per unit

time as a result of the pressure difference along the flow will be

X
dp \

For a compressible fluld, the displacement thickness 1s equal to

(see [48])
. ¢ prVy
‘=~=S (1-)e

On a flat plate, for the laminar boundary layer, in an incompress-
ible fluid (see [33]) .
a‘-lﬂ2;ﬁ§f. (1.63)
In a compressible fluld, the displacement thickness can be found
by introducing into Formula (1:63) the ratio of the shape parameters

and the densitles:

a:,=1.72-’5,f-%7§;-7‘ (1.64)

* *
Here p aad Re are calculated for a defirite temperature.

The shape parameter
H=2, (1.65)

B i d
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*
where o * 1s the thickness of momentum loss. For the laminar boundary
layer in an incompressible fluid (see [33],[48])
H=2}%59,

and in a compressible fluld (see [48])
Ter
H —1+12( o . )+04( 1) (1.66)

Expression (1.64) was derived on the basis of Formulas (1.25) and
(1.28) and the following relationship (see [48])

Hex _'_) AN
H (0' (Glcu)
Substituting the value of 5*szh into the expression for Ep in ac-

cordance with Formula (1.64) and assuming the quantity ( szh/H) P *u )1/

10 be constant along the wall, we will obtain:

x
' 2
p==—1,72-% ';i H;" : (e*s*) h Vl'5x hdx= —E'Vlael';% X.

The energy of the viscosity forces absorbed by the boundary layer
per unit time will be

x

E’=5.;-c/mp'vgdx.

Taking into consideration the value of Cs szh 1n accordance with

Formulas (1.25) and (1.28), we will obtain:
x
EP=O'332 (F‘P‘)l/' V;’oir'h dx-P‘V.wIexx'

The energy lost in the boundary layer will be:
?* dP
l+ L
EymEy=pV ity | ——=
2 ¢/c-nVc

According to Formulas (1.25),(1.28), and (1.64), we will find:
v
2 T, “X
Cf em
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ILet us make the followlng denotation:

P=—L2_,
h -;-p.Vz (1.67)

so that

3
h 3 1.
E,~E =c/cxx( +3 H‘* dx x)P'V (1.68)

Iet (Rekr)o be the critical Reynolds number for the given flow par-
ameters at the wall, wlthout any effect due to the pressure gradilent,

and let (Re be the critlical Reynolds number, with the pressure gra-

kr)p
dient having been taken into consideration. The value of (Rekr)p will
be set equal to that Reynolds number at which the energy losses in the
boundary layer will be equal to the energy losses in the boundary layer
for which the effect of the pressure gradient has not been taken into
consideration; Denoting the quantities whlch correspond to the flow with
a pressure gradient with the subscript "p,' and the quantities corres-
ponding to a flow for which the effect of the pressure gradient has not
been taken into consideration with the subscript "Q" we will have the
following for the critical numbers:
(Ep—E;=(Exde
Let us substitute the value of E from Formula (1.68) into the

last expression: _
dpy ’
(cj cxx)p(l + %‘ Hex -d—x— xp)': ("/ u")o-

Since the quantity cf azh 18 inversely proportional to xl/a,

(|+ ln 2 an ,) . (1.69)
xo dx

From this expression we can find the sought value of xp and the
ratio xp/xo, which correspond to the critical Reynolds numbers, with

Rewdy %2
Regplo  xo (1.70)

In order to simplify the determination of xp, a graph constructed
in accordance with Formula (1.69) is presented in Fig. 1.17.
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Flg. 1.17. Graph for the determination of the
critical length xp in the presence of a pres-

sure gradient as a function of the critical
length X, for a flow without a pressure grad-
lent.

For an experimental verification of Formula (1.69) we will present
it in a different form for the M < 1 case. Let us introduce the Pohlhau-

sen parameter

—4r ¥
dx PV. )

The thickness of the boundary layer at whose boundary the velocity
differs from the streamline velocity by 0.1% (see [33], page 118), will

be equal to

and consequently _
R=—-18-;—x.

Taking into consideration that for the case M < 1 the value of

H = 2.59, Formulas (1.69) and (1.70) can be presented in the following

form: Rewds | (10,0483,
(Rexplo , (1.71)
Figure 1.18 shows a comparison of Formula (1.71) and the experi-

mental data derived in a subsonic wind tunnel [12].
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Fig. 1.18. Comparison of theo-
retical and experimental values
of relative critical Reynolds
number in the presence of a pres-
sure gradient.

§1.6. FEATURES OF HEAT TRANSFER IN THE CASE OF HYPERSONIC VELOCITIES

In the case of hypersonic velocities (M > 5) certain mechanical,
physilcal, and physicochemical phenomena develop at the surface of the
body past which the flow is moving, and these phenomena change the
physlcal parameters of the alr and may elther be endothermlic or exo-
thermic reactions;

The dissoclation, recombinatlon, and lonization of the air can be
included among such phenomena: Moreover, as a result of the increase
in the displacement thickness of the boundary layer in the case of hyper.
sonic velocities, the 1increasing pressure of the flow at the surface
of the body begins, in this case, to exert a pronounced effect on heat
transfer.

The above-mentioned phenomena are of great signifilcance for heat
transfer in the case of M > 10.

In the case of alr dissoclation produced by high air temperature,
molecules of oxygen O2 and nltrogen N2 decompose into atoms, and 1in
this case a substantial quantlity of heat 1s absorbed. For example, at

- 47 -



M = 20, the tempe}ature of an 1ideal gas not subJect to dissociation
must be 17,500°C in back of a normal shock wave, and for the case of
a real gas, taking into consideration the absorption of energy for dis-
soclation, at an altitude of 50km the temperature will be only 6500° K.

For oxygen, total dissoclation sets in at 6,000°K, and for nitrogen, at

10,000°K [71.
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1.0[Txapocrs honena
24 xmjcex
08 S xmfcen 4,2 kmfcex
26 36 xwfcex, ~ /]
7 =
T | 4o
94
6,6 xM/cox
02 78 xm/CceK
(o .,ﬂuﬂmc'é Oxucasi, Memanns
/4 i1 i 1 1 A I 1
1 255 1 10? 09 10% ucgemfoex )

Fig. 1.19. Relative gas-kinetlc specific
heat flow as a function of the rate of air
recombination. 1) Flight velocity, 2.4km/
sec; 2) "Pyrex"; 3) oxides, metals; 4
ustcm/sec.

Since the wall-surface temperature in the case of hypersonic vel-
ocitles will always be lower than the alr temperature behind the shock
wave, an lnverse process — the recombination of the atomlc gases — may
take place at the wall. In this case, thermal energy will be liberated.
Below, we present some data on the effect that dlissociation has on heat
transfer at the critical point of a blunt body.

The quantity of heat liberated in the case of recomblnation 18 a
function of the rate of recombination which, in turn, 1s determlned by

the concentration of atoms at the surface and the catalytic propertles
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of the wall. Figure 1.19 shows the theoretical relationship between the

relative specific heat flow to the wall (q = qu/q ) and the rate of

u= o
recombination ug, at the wall [8]; the radius of nose curvature in this
case 1s assumed to be 0.5m and the wall tomperature 1s taken as 700G°K.

It follows from the cited graph that with recombination rates in
excess of 103 cm/sec, the effect of recomblnation on heat transfer be-
comes close to the maximum and 1s a weak function of any further in-
crease in the rate. In the case of an infinite recombination rate, heat
transfer will be almost the same as in the case in which there 1s no
dissociation [28], 1.e., the recomblnation almost completely offsets
the effect of dissocilation.

Conversely, at rates of recombination below 10 cm/sec, its effect
i1s insignificant and heat transfer as a result of dissociation may dim-
inish substantially as, for example, with a flight veloclty of 7:8 km/ se
this drop will be greater than by a factor of three.

The rates of natural recombination (without catalysts) are quite
1ow: If atoms lmpinge on the wall, the rate of recombination may in-
crease manyfold. In thils case, the wall acts as a catalyst.

The catalytic properties of the wall are a function of the material
of which the wall is made. Metals yleld higher rates of recomblnation,
whereas for nonmetalllc walls the rates of recombination are substan-
tially lower. Figure 1.20 [8] shows the rates of recombination for oxy-
gen and nitrogen at walls made of varlious materlals; these rates were
derived experimentally. There is 1little data on rates of recomblnation
and therefore the graph shows curves as well as indlvidual points
(circles) and approximate areas (large circles with chemical denotations
of elements.

A comparison of the curves shown in Figs. 1.19 and 1.20 shows
clearly that a metalllc wall wlll receive only slightly less heat than
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at whilch recomblnation takes place at an infinately great rate. It
should be borne in mind that with an increase in temperature the rate
of the catalytic reactions also increases; this can also be seen from
Fig: 1.20. Therefore, in first approximation, dissoclation need not be

taken into conslderation in the case of a metallic surface.
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Fig. 1.20. Catalytlc properties
of various materials in recombin-
ation of alr atoms at the wall.

1) KC1; 2) LiCl; 3) "Pyrex" glass;
A)"Pyrex" glass.

In the case of a wall made of a glass-based material, the reduc-
tion in the transfer of heat may be slignificant, since the rates of
recombination in this case will not be great.

Chlorides, oxides of metals, and certain other nonmetallic mater-
lals will yleld intermedlate heat-transfer values. It should be polnted
out that since with an lncrease in wall temperature the rate of recom-
bination increases, a comparatively slight drop 1n heat transfer with
respect to the transfer of heat in the case of an infinite recomblina-
tion rate may be permitted for the group of materials under consider-
ation.

In the case of flow past plane and cylindrical surfaces, the

- 50 -



rhenomena of dissociation and recombination take place under somewhat
different conditions than in the case of flow past the area close to
the critical point. The theoretical investigations of heat transfer 1n
the case of a lamlnar boundary layer show that the effect of dissoci-
atlon on heat transfer in this case is not too great [19].

Glven high temperatures, characteristic in the case of hypersonic-
velocity flow past bodles, the atoms and molecules of the alr, in
addlition to dissoclation, willl also be subject to lonization. Given the
alr temperatures that prevall about a body flylng through the atmosphere
at hypersonlc velocitles, the degree of lonization will not be great.
For example, with M = 20 approximately 1% of the air will become lonized
(see [3]). This degree of ionization has 1little effect on heat trans-
fer.

Although for M < 25 the effect of ilonization on heat transfer 1s
insignificant, 1t may be important in the case of radio communications
[21].

In determing heat transfer, i1t 1s necessary to know the tempera-
ture difference T, — T . [see Formula (1.7)]. On the other hand, the
specific heat of the air is included in Formula (1.29) in order to de-
termine the heat-transfer coefficient. The product of these two param-
eters must characterize the change 1n gas energy as the gas 1s cooled
from a temperature of Tr to the temperature Tst‘

In the case of hypersonic velocities, 1t frequently becomes neces-
sary to deal with an extremely great temperature difference Tr - TSt in
which range the specific heat of the air may undergo pronounced change.
Therefore, lnstead of the followling product

T— er) c;
1t 1s more effectlive to introduce the enthalpy
l=-5:c,d7‘ (1.72)
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and to express the specific flow of heat during aerodynamic heating in
the following form:

Gy=a, (‘r—'ln)' (1 73)

where
a,=gs*c;* V. (1.74)

The value of the heat-transfer coefflclent a, may be determined by
means of Formulas (1.30), (1.31), (1.32), (1.39), and (1.62), if the
quantity c; in this formula 1s removed.

The enthalpy value for varlous temperatures can be found from Fig.
1.21 (see [48]).

Formula (1.62) was derived for the determination of heat transfer
at the critical point of a rounded nose. In the case of great hypersonic
velocities, a structurally simpler formula may be employed; this form-

ula was derived on the basls of experiments carried out in a wind tunnel

(see [41]):

(2 ) (VY gty fozler (1.75)
qo=2.63-10(,°) (Vm,c R lo—1i30
where Vkos is the first cosmic velocity at the ground equal to vkos = 7.
km/sec.
L 2400 2800 3200 3600 4000T°k Since 1n the derivation of Formule
0,28 (1.75) we have taken into consideration
T
P . the experiments that were carried out
026
{ at hypersonic veloclities all the way t¢
L~ .
424 _ ‘fSnW‘T cosmic velocities, the effect of the di
(]
L [71 soclation and recombination of the air

9 400 800 1200 00 2000T°K
has, therefore, been accounted for in

Flg. 1.21. Enthalpy of air, re-
ferred to temperature, as a this formula. The experiments which

function of alr temperature.

served as the basis for this formula
were carried out with glass "pyrex" models, ard this materlal exhibits
weak catalytic properties (see Fig. 1.20). However, the transfer of hea
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in these experiments was measured by means of calorimeters which con-
sist of platinum plates placed into the stream (see [49]). We can see
from Fig. 1.20 that platinum exhibits high catalytic properties (uSt >
103 cm/sec), and therefore Formula (1.75) ylelds the transfer of heat
for the surfaces that exhiblt the greatest recomblnation rates.

The enthalpy value io at the critical point may also be derived on
the basis of the fact that all of the kinetic energy in the decelerated
flow 1s converted into thermal energy. Then

1

— Y2
2 -

— 10-41/2 (1.76)
. =i,+1,2-1074V,,

iy=iat

where 1 1s the enthalpy of the air in an undisturbed flow; thils value
of the enthalpy, as well as 1St and 1300 can be found from Flg. 1.21.

Because of the exlistence of the boundary layer, the main stream
1s deflected from the wall by approximately the dlsplacement thickness
(see[48]). With great hypersonic velocities, the displacement thickness
of the boundary layer shows a pronounced increase, and thils results in
an increase for the angle of 1nclination of the 1imlt of the displacer
ment thickness, and consequently 1t leads to an increase of pressure 1in
the stream and at the wall. The lincreased pressure results in increased
alr density whilch, in turn, produces an increased heat-transfer coeffic-
ient.

The increase in pressure produced by the boundary layer can be
determined by assuming the boundary layer, having a thickness 6*szh’ to
have solidifled. In this case, a flat plate will be similar to a profille
exhiblting maximum thickness at the tralling edge.

The local angle of inclination for the limlt of the boundary layer,
corresponding to the displacement thickness, willl be

s’

- (1.77)

This angle 1s added to the local geometric angle for the flow; 1n

Ap=
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the case of a cone, the half-angle of the cone flare increases by the
angle A9,

The value of the derivative in Formula (1.77) 1s easily determined
for a plate with a laminar boundary layer by Formula (1.64):

Box 1 g, (1.78)
dx 2
Hence we can see that with an increase 1n the displacement thickness
there 1s an increase in the local angles of stream inclination.

Having determined the value of A9, the formulas presented in §1.3
can be used to find the heat-transfer coefflcient, making provision for
consideration of the pressure produced by the boundary layer. As a resulf
of the lncrease in pressure, the alr parameters for the boundary layer
change, and this produces a change in the displacement thickness. There-
fore, in order to increase accuracy, second-approximation calculations
can be carried out. However, in the case of M_ < 15 and Re > 105, one
approximation is sufficient:

The influence exerted by the boundary layer on pressure 1s a strong
function of the Reynolds number: Flgure 1l.22 shows the graph for pres-
sure at the surface of a flat plate in the case of two Reynolds numbers
with respect to M numbers. We can see from the graph that for Re > lO6
the effect of the boundary layer on pressure 1s not great.

The boundary layer exerts a significant effect on the pressure in
the case of low Reynolds numbers. Therefore, it is particularly impor-
tant to take into conslderation thls effect in the case of flights at
great altitudes, as well as in the determination of heat transfer in the
area of the leadlng wing edge or close to the polnted nose of a cone.

The boundary layer is generally turbulent for Re_ > 106, and there-
fore its effect on pressure is not great.

Since the effect exerted by the boundary layer diminishes with the
increase in the Reynolds number (Fig. 1.22) a negative pressure gradient
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can be observed along the surface. Thls will enhance a rise in the
critical Reynolds number.

The heatling of the alr behind the shock wave increases the intens-
1ty of alr radlation. At near-cosmic velocitles, the intensity of radia-

tion from the air behind the normal shock

P

Pos J wave 1s so great that it can sometimes pro-

* k/ duce a radiant energy flux that lmpinges

20 on the forward surface and is of the same

7 / order of magnitude as the heat flows which

2 h“-Mtj/ eccur as a result of aerodynamic heating.

. , //’ The lmportance of this radiant-energy
//7—”“~b— flux in the over-all transfer of heat re-

: “::4’,//;m“fm‘ sulting from the increase in flight veloc-

0 4 ) 1216 20 Mo, ity exhlbits an extremely rapid rise. In-

Filg. 1.22. Relative pres-
sure at surface of plate
at a = 0, sald pressure
arising as a result of
the boundary layer.

deed. 1f the specific convection heat flow
q; at the critical point of a blunt-nose
body 1s approximately proportional to
iRV
the heat flow q of radiant energy emitted by the air behind the shock
wave 1s approximatly proportional to (see [16])
ga~PLRVY.

We can also see from the last relationship that the radlant heat-
ing being examlned here wlll lncrease with a drop in altitude, and this
will take place more intensly than aerodynamic heating. It is also char-
acteristic that with an increase in the radius of nose curvature the
aerodynamic heating 1s reduced and radiant heating increases.

The gases included in the composition of the alr do not radiate 1n
an identical manner, and so the importance of the radlation from the

various components of the air changes with temperature and density. For
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example, at a temperature of 8,000° K, i.e., characteristic of the air
behind the shock wave, in the case of near-cosmic velocities a great
role 1s played in the total radiation by nitrogen monoxide NO which is
formed at high temperatures in the air, and molecular nitrogen N2 is
also extremely important. At a temperature of 12,000° K, characteristic
of velocltles close to the second cosmic velocity, molecular nitrogen
and nitrogen monoxide dissoclate and the primary emitters are the atoms
and lons of nitrogen and oxygen.

The thickness of the emlssion layer which, in first approximation,
can be assumed to be equal to the distance between the shock wave and
the critical point, exerts great influence on the intensity of air rad-
lation. The distance between the shock wave and the critical point, 1n
turn, 1s a function of a number of factors including the radlus of nose
curvature, the density of the alr, and the degree of dissoclatlon.

In connection with the great number of factors which affect the
radiation of the air behind the shock wave, a purely theoretlical deter-
mination of the emissivity of the alr behind the shock wave 1s extremely
complex and none too reliable. For this reason, experimentation plays
a more lmportant role. At the present time, these experiments are belng
carried out in wind tunnels.

It was found in the experiments that were carried out that given
a nose radius of 0.3 m, and M = 20 and at altitudes of the order of 30
km, radiative heat transfer will amount approximately to 10% of the tota
heat flow to the critical point (see [13]). A similar result was obtailne
by R. Meyerott [16] in his theoretical determination of radiation for
a nose having a radius of curvature of 0.6 m at V= 7.5 km/sec for an
altitude of 37 km.

However, at greater flight velocltles the heat flow due to the rad-
iation of the air may exceed the convectlion heat flow. For example, in
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accordance with calculations carried out by K. Gezli and D.D. Messon
during a vertical ascent into the atmosphere at a velocity of 10.7
km/sec of a sphere having a radius of 0.46 m, at altitudes between 30
and 40 km the heat flow due to radiation was greater approximately by
a factor of two than the convection heat flow (see [16]).

A rough estimate of the heat produced by the radiation of the air
behind the shock wave and absorbed at the critical point of a blunt-

nosed body can be obtained 1n accordance with the following formula:

i 0(5) ) s e

Thls formula was derived on the basis of an evaluation of calcu-
lation values from the approximate functional relationship presented
above. This formula can be employed for the determination of the limits
of applicability for Formulas (1.62), (1.73), and (1.75). If the value
1s of the same order of magnitude as g according to the clted formula,
where 1f the value 1s greater, then it is evident that it is impossible

to determine heating by means of the aerodynamic heating formulas alone.

- 57 -



Chapter 2
RADIATIVE AND ABSORPTIVE PROPERTIES OF BODIES
§2.1. THE BASIC LAWS OF RADIATION AND THE ABSORPTION OF RADIANT ENERGY

The significance of radiation in the general thermal balance depends

on the surface temperature and the magnitude of the exterior heat
flows. With aerodynamic heating in flight at veloclties of M ¢ 3,

the significance of surface radlatlon is comparatively slight; how-
ever, 1t should be considered. In the case of a flight i1n which M > 5,
radiation may be considerable; here, radiation may be the most effec-
tive means for reducing surface temperature.

For instance, in the example of aerodynamic heating discussed in
§3.1 where M = 5 at an altitude of 30 km, the temperature of the sur-
face at a distance corresponding to 10% of the wing chord, in the ab-
sence of radiation, would equal 860°C, while as a result of radiation
it is reduced to 380°C, 1i.e., by 480°C. When flight velocity increases,
the radiation required to reduce surface temperature is increased.

The heat of radiation in the case of a steady-state thermal regime
has the greatest influence on the surface temperature, whereas in the
case of aerodynamic heating

9=0-

In the case of a nonsteady-state regime of aerodynamic heating, the

influence of radiation decreases, since,
.%3%—%w
For space vehicles, radiation is the only practical method of

dissipating the heat of radiant solar and planetary energy absorbed by
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the surface of the craft. Using the radiation, we may also dissipate
the heat given off by the electronic equipment.

Also of great cignifilcance for space craft is the reflective
capacity of the wall, since the amount of the absorbed radiant energy
from the sun and planets depends on the magnitude of this reflective
capaclty.

The radiation of an absolutely black body obeys Planck's law;

'y S
=y (2.1)

E
where EA 1s the intensity of the monochromatic radiation; A 1s the
wavelength of the radiation; T is the absolute temperature of the ra-
diating body.

If the letter E denotes the total energy radlated per unit body

surface per unit time, then

dE
E\='7r- (2.2)

o 1n Eq. (2.1) are equal to (see [4]):
kecal - m?/sec; ¢y = 1.44 - 10"2 m * deg.

The constants cq and ¢

¢, = 8.85 - 1070

The integration of Eq. (2.2) simultaneously with Eq. (2.1) en-
ables us to find the radiation energy of an absolutely black body;
the radiant energy is

_neTs (2.3)
E 15¢§ o,
where ¢ is the Stefan-Boltzmann constant, equal to
c=13+ 6+ 10712 keal/m> sec- deg”
Real bodles are not entirely subject to Eq. (2.3). The magnitude
of thelr radiation is less than the radiation of an absolutely black
body, so that for a real body
= = cT4
E=0q,=¢
where £ 1s the emissivity or blackness coefflclent and € ¢ 1.
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The radlant energy falling on the surface of the body is com-
pletely absorbed only in the case of an absolutely black body. Real
bodies elther reflect or admit a part of the incldent energy, or
they go through both processes simultaneously. The relation between
the absorption and radiation capacitlies i1s established by the Kirchhoff
law.

Ir €y 1s the emissivity for a given spectral wave, and Bk is the
absorption coefficient for the same wave, equal to a portion of the
absorbed energy, then in accordance with the Kirchhoff law, at a

glven surface temperature

=g,
The coefficilents of intergral radiation and absorption at a gilven
surface temperature do not equal one another and depend on the spec-
tral composition of the radiated and absorbed energy. The value of

these coefficlents may be defined as the mean integrals, using Eq.(2.3);

;.l‘Ell d\ 7 &
t=m———= EuEu-—#—; (2.4)
g Ey d\ atl
]
§ BuErg dh r "
=t .52
[eanr A (2.5)
0

Here, the subscript "1" is used to designate the magnitudes of the
body being investigated, for a surface temperature Tl’ while the sub-
script "2" 1s used to denote the magnitudes of the source of radiant
energy absorbed by the body at temperature T2. The values of E>\1 and

E., may be determined from Formula (2.1).

A2
The intensity of the monochromatic radiation EX has a maximum for
each temperature. As an example, Fig. 2.1 gives the curves of the values
of Ex/(Ex)max for 6000°K (temperature of sun) and 1000°K; these curves
were constructed according to Formula (2.1). It is apparent from the
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graph that when the temperature of the surface increases, the maximum

measurement intensity 1s shifted to the shorter waves and becomes more

pronounced.
[A B [ 4
E)max A °
10 . - L~ = = =9
08 7
. T= 1000°K 08 s :
06 \} T'\ e
‘f \\ 0s TG I
T=6000°K 5 2
a4 04 7 S
[N Al b
[ \.
02 N 92 S e B
N ~~
0 ;\—’e [ s Awx 0 2 4 6 & 10Am
Fig. 2.1. Relative intensity Fig. 2.2. Coefficients of mono-
of the radlation of an abso- chromatic radiation as a function
lutely black body as a func- of the wave-length for nickel
tion of the length of the alloy and ceramlcs. 1) ceramic
radiation wave and the temp- A-417/235, T = 760 to 1000°C; 2)
erature of the body. nickel alloy, T = 760° to 800°C.

The ratio between the surface temperature of an absolutely black
body and the wavelength xm at maximum radiation intensity 1s determined
by Wien's law which may be obtained from Eq. (2.1) by differentiating.
According to this law

2893
=?v (2'6)

where Am is measured in microns. Wien's law enables us to estimate the
wavelength in the region in the region in which the radiation intensity
is greatest.

Solids can be classifled on the basis of thelr radiant and absorp-
tion properties as conductors of electric current, insulators, and
semiconductors, Metals are assoclated with the conductors, while ceram-
i¢c material such as plastics, lacquers, paints, etc., are assoclated
wilth insulators.

Conductors and insulators radlate and absorb radiant energy in
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various ways., Conductors exhibit low emlssivity at normal temperatures,
while insulators exhiblit high emissivity. Conductors and insulators
vary 1in the spectral composition of radiant energy: in the case of
conductors radlative capaclty 1s most important in the shortwave region,
while in the case of insulators radiative 1s most important in the
longwave region. As an 1lllustration of this, Flg. 2.2 gives the co-
efficlents of monochromatic radiation for metal and ceramics as func-
tion of wavelength; these coefflcients were obtailned by experiment [40].
§2.2 EMISSIVITIES FOR VARIOUS BODIES AND SURFACE CONDITIONS

The temperature of the surface can have a consliderable influence
on the radiative capacity of a body. Metals, as was indicated in §2.1,
have low emissivity in the case of long waves. However, when the wave-
length decreases, the emissivity of metals increases. If we take into
consideration the fact that according to Wien's law the wavelength of
maximum-intensity radlation decreases with an increase in the surface
femperature, the integral radlative capacity of metals should increase
with temperature. This 1is conflrmed by experiments.

Figure 2.3 (see [40]) gives the curves of the integral emissivity
for heat-resistant alloys (lower curves). As can be seen, at tempera-
tures higher than 600°C, the increase in emissivity can be considerable,

The integral-radlatlion coefficlients for some metals are given
in Table 2.1; this table also gives the temperature ranges of the ex-
periment and the corresponding ranges of the change in emissivity.

It is also apparent from Table 2.1 that as the temperature in-
creases, emissivity Increases.

Emissivity for metals depends on thelr electric conductivity. The
best conductors have lower emissivity. We can see from Table 2.1 that
good conductors of electricity, suech as aluminum, gold, copper, and
silver, have low emissivity.
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Fig. 2.3. The influence of
the surface temperature on
the coefflcient of integral
radiation from heat-resis-
tant metals. 1) stainless
steel; 2) nickel-cobalt al-
loy; 5) stainless steel; 6)
nichrome; A) oxidized sur-
face with t = 1150 C; B) un-
oxidized surface.

It 1s possible to coat a metal with lacquers or paints which are
poor conductors of electriclty and heat.

In thls case, the emissivity increases sharply and approaches
unity.

Table 2.2 gives the emissivity for certain paint coatings.

It should be noted that although certaln paint coatings are white,
their radiative capaclity 1s close to unity. This 1s explained by the
fact that their good reflective capacity (and consequently, poor ra-
diative capacity) is manifested only in comparatively short wavelengths
corresponding to the range of visible radiation. These coatings radiate
infrared rays well. This same phenomenon may also be found in the case
of certain other dielectrics. For example, at 20°C, the emissivity
of chalk is 0.81 [9], for gypsum, it is 0.90 [17], and for glazed
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TABLE 2. 1.
Integral Emissivity for Some Metals (see [17])

1 Haumenosauue rc s
% Anominnit noanposauubiii 225575 0,039+0,057
L eaedo nomtposannoe 425+1020 0,144+0,377
5 XKeaeao mtoe HeoGpaboranioe 925+1115 0,87+-0,95 ,
Cranbioe anTbe noAHPOBaHHOE 770+-1040 0,52+-0,56 i
6 Craab ancrosas wandposaruas 9401100 0,55+0,61 !
7 Hepxaseomas craas [40] 480--800 0,22=-0,575 ‘
8 Huxeab snctuifi, noanposannuft 225--375 0,070,087 i
%0 Xpon 100--1000 0,08+0,26
Huxpowm [40) 480800 0,19+0,35
L1 Huxeap-koBaasrosuit cnaas {40) 450+ 800 0,25-+0,65 l
12 Uukx (92,1%), noanposamnuit 225-+325 0,045-0,053 !
13 Oumikosannoe aucrosoe xeseso 28 0,228 I
1k 301070 nMOAHPOBaNHOE 225+635 0,018+-0,035
15 Meas NOAKPOBANHAR, SACKTPOARTHAR 80115 0,018+-0,023
16CepeGpo noanponanxoe, YHCTO® 225+625 0,020--0,032
17 MNaatuna nosuposanuas, uHCTas 2254625 0,054--0,104
18 Bponia windosannan [43] 65 0,04
19 Bponsa nopucras [43) ) 75175 0,57
20Moan6aeu [11) 600+1000 0,08+-0,13
L Moau6aen [11] 1500+2200 0,19+0,%

1) Item; 2) polished aluminum; 3) polished iron; 4) crude

cagt iron; 5 oligshed steel casting; 6) sheet ground steel; 7) stain-
less steel [40]; 8) nickel, pure; 9) chrome; 10) nichrome [40];

11) nickel-cobalt alloy [40]; 125 zine (99.1%), polished; 13) zinc-
plated sheet iron; 14) polished gold; 15) polished copper, electrolytic;
16) polished silver, pure; 17) polished platinum, pure; 18) ground
bronze [43]; 19) porous bronze [43]; 20) molybdenum [11]; 21) molyb-
denum [11

porcelain it is 0.92 [17].

The use of paint coatings is limited because they are siable only
to comparatively low temperatures, e.g., heat-resistant enamel 101/19
and black asphalt lacquer are stable when subject to extensive heating
to 250°C. Heat-resistant enamel with an sluminum coating 1s stable
approximately to 400°C; however, aluminum paints have a low emissivity
€ = 0.35 [17]. The addition of aluminum powder has a telling effect.
We can use the oxide films of certain metals as heat-resistant

coatings which have high radlation capacity. For example, iron oxide
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TABLE 2. 2.

Emissivitles for Certaln Paint Coatings

T moxpHTHR 1 , £C ¢ ﬂﬁ&?ﬁ’ .
HHK
3, Jax Geauit 40+95 | 0,80-0,95 [17]
_ " Jlak vepHuli MaroBu#t 4095 0,96+-0,98 (17}
Jax uepnufl Grecramni 25 0,87 n7n
GakeantoBnlt A3k 80 0,93 [36)
eanak wepuniil MaToBHH 74145 0,91 {171
g Macasupie Kpacky pa3iHyHLIX 11BETOB 100 0,92+-0,96 [17)
9 3Jvarenas Kpacka 20 0,85+-0,95 {36)
LOCaxa aamnosas (0,075 ~u 1 6oabuie) 40--370 0,94 [17)
L1 Caxa ¢ XHIKHM CTEKAON 100+185 | 0,96+0,95 117}
L2 AsoMunuenas kpacka 150+-315 | 0,35 [17)

1) Type of coating 2) literature source; 3) white lacquer;
4% dull black lacquer; 5; bright black lacquer; 6) bakelite lacquer;

7) dull black shellac; 8) oill paints of various colors; 9) enamel
pain; 10) lamp black (0.75 mm and more; 11) carbon black with liquid
glass; 12) aluminum paint.

in the temperature range from 500 to 1200°C exhibits an emissivity
which ranges from 0.85 to 0.95; the emisivity of nickel oxide in the
temperature range from 650 to 1255°C ranges from 0.59 to 0.86 [17].

The use of metal oxide films to increase radlation capacity is
advantageous in that they are easy to apply, whlle the cohesion
strength with metal 1n the case of a thin layer 1s substantial. The
simplest method of obtaining a film involves the preliminary heating
of a metal and keeping it at a high temperature in air for several
minutes.

Figure 2.4 shows the emissivity curves for stalnless steel at
various temperatures as functlons of the oxidatlon temperature. The
tested specimens were kept at the oxldation temperature for fifteen
minutes. The graph given in Fig. 2.4 was constructed on the basis of
experihental data given in work [40].

It is apparent from the graph that the oxidation of stainless
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steel at 50°C for fifteen minutes increases the emissivity approximate-
ly to € = 0.9. This 1s also true for a number of other alloys (see

Fig. 2.3).

€ While the oxide films are effective
1 /// ' in the case of those metals indicated in
08 |- bancaadir A
mm%-\~___—f’ Flg. 2.3, they are not as effectlive wilth
. 800°¢ —_| _~/} others, For certain metals, even though
6oayc ) the oxide film does 1ncrease the radiation,
04 S§0g*C N /
’ ~ emisgivity remalns very far from unity.
] For example, in the case of an aluminum
02
*400 2 0 0 0 . .
;ﬁmnnﬁf,ungxf 1z0oee oxide fi1lm, obtained by means of soaking

Fig. 2.4 The influence of
the oxidation temperature
igs§h§t§2§88i¥i§§d§£tigﬁin' a factor of approximately three, but the
temperature; 2) oxidation
temperature.

at 600°C, the emissivity 1s increased by

value of this coefficient is still small;
for the temperature range from 200 to
600°C this value ranges from 0.11 to 0.19 [17].

Table 2.3 gives the emissivities for a number of metals with oxi-
dized surfaces. For comparison, the emissivities of these same metals
with aonoxidized surfaces are also given in this table.

The emissivity increases as the surface roughness increases. If
the height of the roughness tubercles is several times greater than
the radiation wavelength the emlssivity €sh of the rough surface as a
function of the emissivity e of a smooth surface, may be expressed by

the following formula:;
ta=2[1+2,8(1—e. (2.7)

The structure of this formula 1s theoretically derived from
Lambert's law, according to which the quantity of radlant energy &t an
angle y to the normal 1ls proportlional to cos 7.

- 66 -



TABLE 2. 3.
The Effect of Oxidation of a Metal Surface on its Radiation Capacity

Jlureparyp-

Hausenosanue 3 ¢ C ¢ finft HeTON-
HUK
3Crans antas NoAHPOBALNAN 770+-1040 | 0,52--0,56 117
LCraas okucnennas npu 600° C 200+-600 0,80 (17)
5 HepxaBeowas craas 480800 | 0,22+-0,575 [40)

6He%>g°a|(;-_'eloulaa crasb, Okucaenwas nps | 450+840 | 0,43+0,63 [40}
8 .
T Helxz);ggfgomaa cTaas, OKkucaennaa npu | 480+970 | 0,62+0,73 [40)

8Hep>ggagomau ctans, okucaennas npu | 480+1150 | 0,85+0,96 [40)
1150°

Huxean noanpopanuntit 225375 | 0,07+-0,0871 * [17]
-gqlnxe.u. oxucaennutii npn 600°C 200--600 | 0,37-+-0,48 {17}
}Enxpou 480800 | 0,19+-0,35 [40]

HXpoM, OKHcacHHuii npu 1150°C 4801150 | 0,75+0,90 [40]
1 Hukeab-kobaanToButil cnias . 450--800 | 0,25+0,65 [40]
14ukeab-koBaaptoruft cnaan, okucaennnil | 450+1150 | 0,85-0,98 [40)
npx 1150° C
Lo\ novunii noanposanHui 225-+-575 10,039+0,057 17}
16\ nomunuit, oxucaennuft npun 600°C 200600 | 0,11+0,19 7
17Meas moanpobannas .80+-115 10,018+0,023 (17}
8Meas, okuncaennas npi 600°C 220-:-600 | 0,57+-0,87 171
QNaryns MaTOBAR - 50--350 0,22 {17}
Qlaryus, oxucaennan npn 600° C 200600 | 0,61+0,59 (17
U Junk noaupoBaunnft 225325 |0,045-+-0,053 17
a-luux. okncaennuit npun 400° C 400 0,11 ' 17

1) Item; 2) literature source; 3) polished cast steel;

4) steel oxidized at 600°C; 55 stainless steel; 6) stalnless steel
oxidized at 800°C; 7) stainless steel oxidized at 1000°C; 8) stainless
steel oxidized at 11502°C; 9) polished nickel; 10) nickel oxidized at
600°C; 11) nichrome; 12) nichrome oxidized at 1150°C; 13) nickel-
cobalt alloy; 14) nickel-cobalt alloy oxidized at 1150°C; 15) polished
aluminum; 165 aluminum oxidized at 600°C; 17) polished copper; 18)
copper oxidized at 600°C; 19) dull brass; 20) brass oxidized at 600°C;
21) polished zinc; 21) zinc oxidized at 400°C.

The coefficient 2.8 was determined on the basis of experiments.
Figure 2.5 glves the results of an experimental check of Formula (2.7).
The radiation capaclity of porous bodies 1is substantially increased,
since each pore may be looked upon as an absolutely black body. For
" example, porous bronze in the temperature range from 75 to 175° has an

emissivity of € = 0.57, while ground bronze without pores at 65° has
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an emissivity of € = 0.04 [43].

At the present time, broad distribution has been given to lami-
nated plates, which together with good structural properties possess
superior heat-insulation properties. With respect to radiation capacity,
they behave like all other dielectrics, 1i.e., they have high emissivity
at temperatures lower than those which characterize thelr heat resls-
tance.

Laminated plates are based on binding substances, generally resins
and rfillers. In laminated plates with high mechanical properties, we
use fiberglas, glass fabric, asbestos fabric, cotton, or silk. Table
2.4 gives the emissivity of certain filler materials. We can determine
the radliation of resin from the emissivity of bakelite lacquer, which
is given in Table 2.2, As can be seen from Table 2.4 (and also Table
2.2), the emisgsivities of the materials forming the laminated plates
are close to 0.9.
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Flg. 2.5. The effect of
roughness on the emissl-
vity. 1) Experimental .
points; 2) nichrome;

3) nickel-cobalt alloy;
4) stainless steel; 5
brass; 6) aluminum.
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TABLE 2. 4.
Emisgivities of Flller Materials for Laminated Plates, etec.

Haumenosanue *°C € n"'.fﬂ’i{ Y
. HCTOYHHK
3 AcBecrosas Gymara : 40+370 | 0,93+0,95 (17
Bymara ronkan, HakaeeHHAR HA MeTaX- 95 0,89 [17)
AndeckHi-ancr )
Zlepeso : 70 0,91 (36)
Crexao 20-<-100 | 0,94+0,91 [y
g Crexao B 250+1000 | 0,87+0,72 [11]
Crexao 1100--1500 | 0,70+0,67 (LM]
9 ¥rom , . 1004600 | 0,81+0,79 |  [11]
10 nac 20 0,8+0,9 [11]

1) Item; 2) literature source; 3) asbestos paper; 4) thin

paper gliued to a metal sheet; 5) wool; 6) glass; 7) glass; 8) glass;
9) carbon; 10) gypsum.

§2.3. ABSORPTION COEFFICIENTS FCR VARIOUS BODIES

In the case of flight at very high altitudes (higher than 150 km)
and in the case of cosmic flights, a basic source of heat is the sun.
In this case, as will he shown further in §3.3, the basic parameter in
determining the temperature of the wall 1s the relation of the absorp-
tion coefficient to the radiation coefficient (emissivity), that 1s,
B/e [see Formulas (3.9), (3.10), and (3.11)]. Let us note that B cor-
responds to the solar radlation spectrum while & corresponds to the
spectrum of infrared rays at the temperature of the wall.

Because of the selective nature of the absorption capacity, the
ratio B/e will be located in a broad range of values. Figure 2.6 gives
the coefficlents B>¥ of monochromatic absorption for certain polished
metals depending on the length of absorbed radiant energy (see [15]
p. 241). It is apparent from the graph that the absorption capacity of
metals for the energy of solar rays with maximum intensity (the wave-
length is 0.5 u) increases greatly in comparison with the absorption
capacity, and consequently with the radiation capacity (the Kirchhoff
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law). For infrared rays corresponding to the possible temperature of
the wall (the wavelength of a ray with maximum intensity is 6 to 8 ).
In the case of metals with very good electric conductivity (silver,
copper, gold) there is a sharp increase in the absorption coefficient,
which begins at wavelengths of approximately 1 p. For other metals,

the absorption coefficient lncreases gradually as the wavelength de-

creases.
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Fig. 2.6. Coefficients of monochromatic
absorption of various metals. 1) silver;
2) gold; 3) copper; 4) steel; 5) alumi-
num; 6) nickel; 7) steel; 8) chrome; 9)
nickel.

The integral absorption and radiation capacities are determined
to a significant degree by coefficients corresponding to absorption
and radiation at the wavelength Am of maximum intensity.

Table 2.5 gives values of the ratilo 5A2/€A1’ found from Fig. 2.6;
In addition, BXQ was determined at Ay = 0.5 pu, while €,1 Was deter-
mined at Am =7 W,

It 1s characteristic of metals that the ratio B)\a/:-:)Ll is greater
than one. Silver has the lowest value of sz/exl and gold has a
higher value of BXQ/EXI; however, in the region of maximum absorption
intensity (xm = 0.5 1), the absorption coefficient for gold drops

- 70 -



sharply and consequently, the integral coefficlent of absorpticn will
be lower than the value indicated in Table 2.5. The same applles to

copper. For example, for gold at X = 0.7 pn, B = 0.06 and, consequently,

A2
BXE/EXI = 2,4,

TABLE 2. 5.
The Ratio of Absorption and Radiation Coefficients (Emissivity) for
MaximumeIntensity Wavelengths

2 B 2 .
Meraaa npH lx)O’.S ME | upn A=7 MK Pzt
|
Cepebpo 0,06 . 0,025 2,4
QXpou ’ 0,31 0,05 6,2
5 Anounrni 0,35 0,05 7.0
6 Cram 0,48 0,05 9.6
T Meas 0,38 0,625 15,2
Hukeas 0,40 0.025 16,0
9 301010 " 0,60 0,025 24,0

1) Metal; 2) B >at A= O°5M; 3) sllver; 4) chrome; 5) alu-
minum; 6) stee&; 7) copper; 8) nickel; 9) gold.

It should be borne in mind that a finely polished surface lowers
the value of the ratio 8/e in comparison with its value for ordinary
polishing. Actually, 1n the case of fine polishing, the average height
of roughness tubercles will be 0.1 to 0.5 p, while in the case of or-
dinary polishing it will be 0.5 to 6 p. During the @ransition from
ordinary polishing to fine.polishing, the radiation coefficient (emi-
ssivity) hardly changes, since in relation to the wavelength of the
radiation (~7 ), the surface in the case of both ordinary and fine
polishing will be smooth. As concerns the coefficlent of absorption,
the surface with ordinary polishing with respect to the wavelength of
maximum absorption intensity (Am = 0.5 u) will be rough, since the
height of the roughness tubercle will be several times greater than
the wavelength (1 to 12 times greater). Therefore, the absorption
coefficlent in the case of fine polishing should be lower than in the
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case of ordinary pollshing, and consequently, the value of the ratio
B/e should be lower.

To shield against solar-ray heating we may use a dielectric sur-
face coating which has high emissivity and a small solar-energy ab-
sorptlion coefficlent.

In particular, 1t 1s possible to use a pailnt coating. Table 2.2
shows that the emlssivity & of palnt coatings is on the average equal
to 0.9, while the absorption coefficient of white paint for example
ranges from O.12 to 0.26. Consequently, the ratio B/e will range from
0.13 to 0.3.

Certain materials have very low absorption coefflclents when
emlssivity is of the order of 0.9. For example, gypsum has an absorp-
tion coefficient of 0.05 to 0.10, while magnesium oxide even has an
absorption coefficient of 0.1 to 0.2.

Table 2.6 gives the absorption coefficient of certain materials
at room temperature.

TABLE 2.C.

Coefficlents of the Integral Absorption of Solar Energy of Certaln
Materials

| L Marepuas g | Moo o
3 Anomunnit noanposannmil 0,26 17
4 AmomMunnfi marobuit 0,38 12]
2 Meab noanposaunas 0,26 (17)

Keacao noauposanHoe 0,45 [17)
¥eaeao okucaexnoe 0,74 [17)
¥ese3o ounnxosanuoe - 0,66 {17}
? oKpacxa Geaan . 0,12+-0,26 17}
Kpacxa uepHas 0,97+0,99 (17
}%.\.mxmuucaaa KpacKa ~ 0,35+-0,40 12
Leaan papdoposar smans 0,25+0,35 2)
l3runc 0,05+0,10 12
}: Oxncy Maryna (MaroBan) 0,01-+0,02 12)
bymara Geaan . - 0,27 7
Bymara sarmanickan Geaasn 0,15+0,20 2
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Key to Table 2,6, 1) Materials; 2) literature source; 3) polisked alu-
minum; 4) dull aluminum; 5) polished copper; 6) polished iron; 7) oxi-
dized iron; 8) iron; 9) white paint; 10) black paint; 11) aluminum
paint; 12) white porcelain enamel; 13) gypsum; 14) magnesium oxide

2

(dull); 15) white paper; 16) white Whatman paper.
Manu-
script [List of Transliterated Symbols]
Page
No.
58 Qus = Yz T Yziuchayemyy =~ Lradiated
58 93 = 93 = 93erodinamicheskyy ~ Zaerodynamic
58 Quar = 9nag = %nagrev = %heating
66 E = €

u sh = Ssherekhovatyy = Srough
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Chapter 3
THE TEMPERATURE OF THE WALL DURING A STEADY-STATE THERMAL PROCESS

§3.1. THE TEMPERATURE OF THE WALL WITHOUT INTERNAL COQLING

The steady-state thermal process 1s characterized by a tempera-
ture which 1s constant with respect to time at any point of the flow
and of the streamlined body. This process is of interest in the case
of a long flight with constant veloclity at constant altitude or in the
case of space flights at sufficlently great distances from the earth
or from another planet.

In the case of the steady-state thermal process, the equipment
1s not heated and consequently qnag = 0, When there is no cooling of

the inner surface, the thermal-balance equation (1.13), with consid-

eration of Formula (1.11), will be:

Ge = a7+ 44~ Gy ~ 4y =0. (3.1)

Here the temperature of the wall will be constant with respect
to 1ts thickness, This 18 the temperature at which the heat flows
approaching and leaving the plating reach a state of equilibrium.
Consequently, this temperature 1s called the equilibrium temperature.

The heat loss qg along the surface 1s produced by a temperature
gradient along the surface; for & cylindrical surface with the length
1 from the generatrix perpendiéular to the flow, the quantity of heat
given off per second will be:

—* (_g%)z P
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where X 1s the dlstance from the lnvestigated point.

The quantity of heat entering the same surface element will be:
or
A (;:)'zae,.
Here "1" indicates the cross sectlion through which the heat enters,

while "2" indicates the cross section through which the heat exits, If

the distance between cross sections is dx, then

A[(% 2 _(%)I]"“ — _)—‘_Z?I-Bw

{dx ax2

Gp=—

It is apparent from the formula obtained that the heat loss
through the cross section of the plating will take place when the
temperature gradient along the chord is not constant. Substantial
losses may be observed in the vicinity of the pointed leading edge, at
the nose of the cone, at the point at which the transition from a
laminar to a turbulent boundary layer takes place, and at the places
where the streamline profille is bent.

Since the heat-transfer coefficient and the recovery factor in
Ay s and also the emissivity in qiz’ depend on the temperature of the
wall, we can most conveniently determine the latter graphically. For
this purpose, two or three values of Tst are given and we find qnag
from Formula (3.1); then we construct qnag from T ., and taking into
congsideration the fact that g

nag

The number of points for the determination of qnag is taken de-

pending on the avallable possibillities of obtalning the necessary

= 0, we find Tst’

accuracy for a preliminary evaluation of Tst' For example, if Tr <
< 500°K and there is no cooling, the temperature of the wall in the
majority of the cases will be only somewhat less than the recovery

temperature; consequently, we may give two values of Tst differing
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from each other by 30 to 50°., If the preliminary estimation of Tst can
be made only with an accuracy of several hundred degrees, we must cal-
culate three, and posslbly even four values of qnag'

It should be noted that the wall radlates from two sides; how-
ever, the radlatlion of heat from whithin the structure in the case of
a steady-state thermal process will be compensated by the absorption
of the heat radiated by the structure or the opposite wall. Consequent-
ly, Formula (3.1) should take into consideration only one-sided rad-
lation.

In order to make more clear the above method for determlining the
temperature of a streamlined surface 1n the case of a steady-state
thermal process, we give below an example of the determination of the
temperature of the lower wing surface.

The data derived are as follows: M°° =5, H= 30 km, and a = 10°,
the profile 1is lenticulaI;E = 0.03, chord length is 8 m, and surface
emissivity is e = 0.8. This calculation 1s for the lower surface.

We will determine the coefficients Cys Cos and c3 from Flg. 1.5;
= 1,22, ¢

for M_ = 5, they will be ¢, = 0.41, ¢ = 1.92, The angle

2 3
of surface inclination for the profile at the leading edge in relation

to the chord 1is Yo = 2¢ = 0.06. The angle between the lower surface
of the leading edge and the directlion of the flow

p=a-+d,=0,175--0,06=0,235.
The pressure behind the compression wave is determlned from Formula
(1.40):

;‘ =c74 cchz + 63'9’ ==0,1885.

Hence, from Formula (1.59) we find:

PP =1+0,MLp,=43.
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Let us determlne the relative density behind the compression
wave from Formula (1.57):

Pe

¢ P !
=45 == =2,6.
Pu + ;p_"__*_s

Table 3.1 gives the calculation formulas and the numerical cal-
cul;tions for the flow characteristics along the surface of the profile.

To determine the temperature of the surface, we calculate qnag
for two glven temperatures and then graphically or analytically we find

Tgt (from the linear function between q and Tot) at which g = 0.

na nag
For a laminar boundary layer, we assume sirface temperatures of 650
and 700°K whille for a turbulent boundary layer we assume temperatures
of 700 and 850° K,

To determine the temperature of the adiabatic wall, let us find
the Prandtl rnumber. From ry = 0.83 we determine the temperature of the

adiabatic wall according to Formula (1.1) for a laminar boundary layer

and for the average M, = 3.66 and Ty = 3.53:

T,=Ti(14+0,2r,M}) =1130°K;
then from Formula (1.6) where Tst = 700°K, we find the determining
temperature:
T* =Ty 40,5 (T, — i) + 0,22 (T,—~ T3) = 697° K.

From Fig. 1.1, let us find the Pr value for the obtained determin-

ing temperature (according to Van Dreist):
Pr*=0,684.
Similarly, for a turbulent boundary layer, from r, = 0.89, for

average M, = 3.87 and T, = 325°K we will have:

)

T,=1190°K, T*=703°K » Pr* = 0,684.
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At other wall temperatures, the Prandtl number changes very
little. With Tst = 650°K in the case of a laminar boundary layer,

Pr* = 0,683; when Tst = 850°K 1in the case of a turbulent boundary layer,
Pr* = 0.688. This change in the Prand*l number, in accordance with
Formulas (1.4) and (1.5), has very little influence on r; and r;. In
this connectlon, the found values of Tr are used as conQZants for fur-
ther calculations.

It should be borne in mind that since the braking temperature does
not change when the local flow characteristics change, the Prandtl
number may be taken as constant for all points of the surface; con-
sequently, we may assume that the temperatures of the adlabatic wall
calculated above are the same for all points on the surface. The values
of ¢ _* = 0.257 are also constant for all points on the surface (see

p
Fig. 1.2).

The specific radiation heat flow will depend only on the surface
temperature and consequently according to Formula (1.14) it will equal:
1.94 keal/mzsec
2.61 "

o
at a wall temperature of T, 650 Kevovornnnay,

at a wall temperature of Ty 700°K.........qiz

t
at a wall temperature of Ts

t 850°K.........qiz = 5,68 "

The heat flow of solar radiatlion will have no effect on the lower
surface; the heat flows from the earth will be insignificant (fraction-
al) in comparison with the heat flows from the aerodynamic heating
and radiation and they may therefore be neglected.

The beginning and the end of the transition of the laminar boun-
dary layer into a turbulent boundary layerare roughly determined at .
first on the basis of a visual estimate of Tat/Tr = 6.7. Then, accord-
ing to the data given in §1.5, the critical Reynolds number for the

beginning of the transition

5.
Rey= 1,5-108

(TerlTH)
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TABLE 3. 1.

The Determination of Flow Characteristlics on the Profile

2
Ben'u-mua H dmpuyaal N:y(f::P- Yucrennbie aHaNeHUR 3

Beanunnoli x sanaemcal} - 0 0,05 0,10 0,20 | 0,50 0,75 1,00
Ok m Byq (1 — 2%) - 0,06 0,054 | 0,048 | 0,036 0 —0,03 | =0,06

g ta - 0,235 | 0,229 | 0,223 | 0,211 | 0,175 | 0,145 | 0,115

Px == 0,3 + copl -+ 543 (1.40) | 0,1885 | 0,1807 | 0,1734 | 0,1586 | 0,1195 | 0,0000 | 0,0661

PolPu =14 0,7M2 5, (1.59) | 4,3 4,16 4,04 3,7 | 3.n 2,58 2,16

talbe = (PP a) (pulPI"'S (1.58) | 1 0,980 | 0,957 [ 0,911 | 0,795 | 0,694 | 0,611

P5/P o = (p3/pc) (Pelpa) — 2,6 2,55 2,49 2,37 2,07 1,81 1,59

TolT o = (2:100) (Pl ts) ‘ (1.48) [ 1,65 1,63 1,62 1,595 { 1,50 1,43 1,36

M} = S[(T [Ty (1 +0,2M%) — 1] (1.49) | 13,2 13,4 13,5 13,7 15,0 16,0 1,90
M, — | 3,64 | 3,66 | 3,67 | 3,70 | 3.8 | 4.0 | 4,12

103 X g, = {5, (p3/pa)] X 103 - 4.81 4,73 4,61 4,39 3,84 3,35 2,94

Tyw=T (T3ITL) - 357 353 351 346 325 310 294

Vs = a;M; = 20M, /T, - 1375 1375 | 1875 | 1375 1305 | 1410 1410

106 X py = [1,49-10~7T})(T, + 110)] x 106 (1.34) | — 2,14 2,12 2,10 2,01 1,94 1,83
104X v, = (15/p,) X 104 - - 4,53 4,60 478 | 524 | 579 6,24

106 X Rey = (Vyr/v) X 10~6 12| -~ 1,21 2,4 4,61 | 10,65 14,6 18,1

1) The value and formula; 2) number of formula; 3) numerical
values; 4) the magnitude X is given.

the critical Reynolds number for the end of the transition

Re; = 3'5.“)‘----=5' 108,

er!Tr

It 1s apparent from Table 3.1 that the beginning of the transi-

tion will take place at a distance approximately corresponding to 10%
of the chord, while the end of the transition will take place at a
distance corresponding to 20% of the chord.

The calculated values of Uar 2re glven Table 3.2,From the known

ag
values of qnag = 0. If the temperatures of the wall, which are as-
sumed in the determination of qnag’ are designated as 'I'l and T2, and
the values of qnag corresponding to these are designated as q, and U

then from the linear function between qna.g and Tst (for the interval
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under consideration) we will have:

(7'2-7'1)

T=T,
A g (qi—a)

The values of Tst determined from this formula are also given
in Table 3,2,

In the determination of qnag we take q = 0, since for most of
the chord length the temperature gradient is almost constant. At the
point of transition from a laminar boundary layer to a turbulent
boundary layer (at a distance corresponding to 10 to 20% of the chord),
the sign of the temperature gradient will change, as a result of which
heat flows will develop along the plating; consequently, the breaks
in the temperature curve should be rounded off.

On the basis of the temperatures obtalned in Table 3.2, the crit-
ical Reynolds numbers can be made more exact.

For the beginning of the transition

Ter

_w=~—-0M5
7, 1130
for the end of the transition
Ter 810
T, 1190 0,705

Consequently, the critical Reynolds number for the beginning of the
transition

]
Rey == 1,5.1¢

055=261@

for the end of the transition

Res = 3.5-1¢8

0.705 =4,96-10¢.

According to Table 3.1, the points which are at distances corres-
ponding to 11 and 21% of the chord correspond to these Reynolds numbers.

The temperature values found along the chord on the lower surface
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of the wing profile are given in Fig. 3.1.

TABILE 3.2.
The Determlnation of the Surface Temperature of a Profile in a Steady-
state Thermal Process

Ne ’ Yitcaennsie anavenns
Beanuuna u dopuyaa dop- - 3-
. ’ 1 uyéxu “‘“l“":':m:u’:"c;’:nrpa's TypSyaeninmil norpaunynuit caof )
Beanunno#t x 3anaexca § - l 0,05 0,10 0,20 0,50 0,75 1,0
: !
Beauunnoli Ty 3anaemca 7 — | 650 ’ 700 | 650 | 700 | 700 | 850 { 700 | 850 | 700 | 850 { 700{ 850
TV e Ty +0,5(Te—Ty)+0,22(7, ~T) | (16) | 671 | 695|670 | 694 | 693 | 784 | 701 | 778|697 | 774 | 6921 769
103 X ¢* = (p,7,/7*) X 103 (1.33)| 2,49; 2,40 2,42 | 2,34 (2,19 | 1,94 | 1,78} 1,605 1,49| 1,345[1,95| 1,123
108 X u* = [1,49-10~7(T*)" s [(T* + 110)) « 166 {(1.34) | 3,32| 3,39 13,32 | 3,39 (3,38 | 3,66 | 3,41 3,64 | 3,39| 3,63 |3,38] 3,61
103 X v* = (12%/p*) X 103 ~ | 1,33 1,41 (1,87 | 1,45 [1,515{ 1,89 | 1,92 2,27 | 2,28! 2,70 |2,70] 3,2!
10=6 X Re* = (V,£/+%) X 10~6 (1.20) [0,413] 0,390/0,804] 0,758]1,425| 1,163 2,91| 2,46 | 3,70| 3,13 |4,18] 3,52
103 X oy = [3,26 (Re*)™ "+ (Pr#)~"11 p*¢5 V] 103 (1.30) [5,70 | 5,65 13,98 | 3,95 | — | — | = | — | =| = | =| —
103)(0,-[0,29(Re‘)-o'z(Pn)"/'p‘c;V‘]x103 (anj— [ = (= | - 16,8155 12,0{11,2]9,7]9,1 |79 74
Gama(Tr=—Te) (1.7 12,74 | 2,43 11,91 | 1,70 8,24 | 5,26 | 5,89 3,81 | 4,76} 3,09 (3,87] 2,52
Quar = 92— ns 3.1) 0.90 -0,180,03 |~0,91|5,62 |—0,42| 3,28/~1,87| 2,15/~2,59!1,26/~3,11
TermTy+qi(Te—=T/(0~q2) - 691 648 840 796 770 743

1) Value and formula; 2) number of formulas 3) numerical values; 4) tur-
bulent boundary layer; 5) laminar boundary layer; 6) the value of x is
assumed; 7) the value of Ty 18 assumed.

| Ter'™X
[}
P~ :
—
/ T
700 v
. ]
600
500 —— —_—
"0 a2 04 o6 a8 0%

Fig. 3.1. Temperature distribution
along the chord on the lower sur-
face of the wing profile. M = 5;
H=30Ikmn a =10°; &8 = 0,87
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§3.2, THE TEMPERATURE OF THE WALL WHEN ITS INNER SURFACE IS COOLED
With a cooled wall and the coolant absorbing the specifie Aokh’ the
heat~balance equation for small surface heat losses Qe will be

q|+qa"'qm_qox"o‘ (3,2)

With a cooled outer surface, the wall temperature will be constant 1in
width, and 1ts determination will follow §3. 1.

With an inner cooled wall surface (e.g., by circulating a liquid
coolant) the wall temperature will vary in width. A temperature distribu-
tion diagram for the wall width i1s given in Fig. 3.2, For generallty,

Fig. 3.2 assumes that the wall consists of insulation and plating.Great
aerodynamic heat flow cools the inner surface and increased surface ra-
diation properties do not yleld acceptable wall temperatures. Here, the
radiant-energy heat flow q, can be neglected, and Eq. (3.2) is simplified.

T Tus = Gox- (3'3)
From this we can find the outer surface temperature Tiz‘ To determine
the plating temperature we study the 1nsulation's thermal conductivity.
With a steady-state thermal process, neither the insulation nor the
plating are heated; consequently, the specific heat flow will pass through
any surface parallel to the outer insulation surface

specific heat flow will pass through any similar plating surface

. ary
106 ("d—"') o6 =qox-
If we assume that within the temperature difference across the width,
thermal conductivity does not depend on temperature, we will have

ar Qox

—_—] = .L’I_ =?o -
(4’ )ua ) const u (dy) l°: const.

Consequently, the insulation and plating temperature will change
linearly in width. The temperature differences across the lnsulation
and plating will be

ATn.:“",‘;*"Ei; (3'4)
(3.5)

3
kY, Tox%ng
o6 = l“--—'
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Fig. 3.2. Diagram of the temper-
ature distribution along the
width of the wall in a steady~
state thermal process. 1) Boun-
dary layer; 2) insulation;

3) plating

.
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The temperature of the outer plating surface will be
T06=Tua—A_T|u' (3° 6)

Similarly, using Formulas (3.5) and (3.6), we can determine the
temperature of the inner plating surface.
§3.3. THE TEMPERATURE OF THE WALL DURING SOTAR HEATING

At altltudes higher than 150 km the aerodynamlc heating becomes
insignificant and may be neglected; the equation of heat balance in

the case of a steady-state thermal process will take the following form:

=%t (3.7)

If we do not take into consideration the heat flows along the
surface, 1.,e., assume that q = 0, then, expanding the value of q,

from Formula (1.14), we obtailn:

pp—
T.,= As
e l/u (3.8)
For space craft several thousand kilometers away from the earth,
the effect of terrestrial radiation and the solar rays reflected from

the earth 1s insignificant in comparison with the effect of direct
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solar rays, and consequently the specific heat flows q, and A5t can be
neglected. In the case of lower altitudes, the effect of terrestrial
radiatlion and solar rays reflected from the earth becomes greater;
however, as can easlly be seen from Formulas (1.9), (1.10), and (3.8),
this effect 1s still quite small and these types of radiation will
increase the temperature by less than 2%. Consequently, it is entirely
permissible 1n a number of cases to neglect q, and Agte

If we neglect q, and Aot and take into consideration

Formula (1.8), Formula (3.8) can be presented in the following form:

7=y (E)(E)emt (5-9)

Of particular interest is the temperature for y = O, when the
temperature is maxlmum; in this case, taking into consideration S and

o, we will have:

r,f,=‘4/(-f—)(—3l') =395 i/:f-— (3.10)

If the craft rotates rapldly about an axis perpendicular or al-
most perpendicular to the direction of the solar rays, and if the
craft has a sufficiently thick plating wlith good heat conduction, the
temperature of the plating may be ldentical over the entlire surface.
The same will be true when there 1s heat transfer through the 1nner
wall. This average temperature may be found from the condition that
the total flow of solar radiation falling on a hemisphere heats the
entire surface of the sphere.

The total heat flow falling on the sphere and absorbed Ly 1t will
be:

=R3SB, .
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The total radiation heat flow

4 R%oT Sy,

where Tsr 1s the mean temperature of the entlire surface.

From the equality of these heat flows we will find:

=1/ LV EY os0r/E
T l/4(e)(f)_2801/{—' (3.11)

The value of B/e in Formula (3.11) may be found from the material
glven in the §§ 2.2 and 2. 3.

Manu-
script [List of Transliterated Symbols]
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No.
73 Auar = %nag = %nagrevaniye - %heating
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Chapter 4
THE HEATING OF A WALL DURING A NONSTEADY-STATE THERMAL PROCESS
§4.1. The Temperature of a Thin Wall

In the case of a nonsteady-state thermal process, the temperature
at various parts of the body may change with time. Generally, to de-
termine the temperature of a body at a given lnstant in the case of a
nonsteady-state thermal process, we must solve simultaneously Egs.
(1.13), (1.15), and (1.16). However, this solution is possible only
in certain specific cases in which a number of simplifying assump-
tions are made,

Taking into consideration the fact that generally the loss of
heat along the surface produced by the temperature gradient 1s small
in comparison with the heat which heats the body, we will in the fu-
ture examine the one-dimensional problems for a flat plate, i.e., let

us assume

or _ . . or _
x =0 & oz =0.

Let us also assume that the thermal-conductivity coefficlent does
not depend on the temperature and, consequently, is constant along the
width of the plating. This is entirely permissible for metals and non-
porous insulation materials (laminar plates, ceramics), if we take the
mean value of thermal conductivity.

In the case of the assumptions made Egqs. (1.11), (1.13), (1.15),
and (1.16) may be represented in the following way:

or - =0,
)(’)¢t+“1‘ ::TT Tﬂ) 9 (4'1)
rpaldred (4.2)
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where a 1s the coefficlent of thermal diffusivity.

Structures with thin walls made of metals possessing good cone
ductance are in wide use. In these cases the temperature difference
across the width of the plating may be small and we can then assume
that the plating is suddenly heated along the entire width. In §4.3
we presented a criterlion characterizing the permissible constant temp-
erture along the width of the plating, 1l.e., the criterion of thin
shielding.

Assuming for a thin plating

Todar

(2]

let us find for the specific heat flow which heats the plating, the

expression
daT,
Tuar = €1 d:‘ .
In this case we can substitute the found expression for q for

nag
the first term of Eq. (4.1): then

daT,
d:‘ +2063n6_a(7‘r_7‘06)-q‘=0. (u'- 3)

Even though the plating radiates from two sides, 1n the case of

(8

the hollow unfilled casing formed by the plating (wing, nose of the
body), as a result of the mutual heat transfer between the inner sec-
tions of the plating, the heat will not be able to escape through the
inner surface. When there 1is a substantial temperature difference bet-
ween the lower and upper surface, the internal radlation of the hotter
plating section will be greater than the absorption. This may be taken
into consideration by increasing the radiation coefficient (emissivity)
determined on the basls of a first-approximation calculation.

In the presence of substantial heat-absorbing masses inside the

casing, the total emlssivity may be approximately determined from the
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following formula

=l =)

where Tk 1s the 1inside temperature of the structure. e is the emissivity
for one side of the plating; € is the emissivity of the inside of the
structure,.

Since a and Tr in the case of nonsteady-gstate heating are generally
constant, Eq. (4.3) should be solved by numerical integration with

finite temperature increments

At

eTos (4. 4)

It should be borne in mind that in the case of a nonsteady-state

AT = [q.l +a(7,— Too) - ooorgﬁ

thermal process produced by aerodynamic heating, qy generally can be
neglected. -

In order better to explain the method for determining the temper-
ature of the plating, we examine below an example for the determination
of the plating temperature of a cone with a flare angle of 20°, at
a = 0; the flight altitude 1s 15 km., The flight regime was as follows:
the flight was initlally stabilized at M = 1.5; then the velocity was
uniformly accelerated for 20 seconds up to M = 4; this was followed by
a velocity decrease corresponding to passive flight according to the

law

1.1 8,
v Ve T 107

where Tp is the passive-flight time.

Table 4.1 gives the calculation formulas and numerical calculation
of the flow characteristics at the surface of the cone (beyond the
limits of the boundary layer).

The temperature cetermination for an aluminum alloy plating with
a thickness of 5 mm in a nonsteady-state flight regime 1s given in
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Table 4.2, The same table gives the calculation formulas. The initial

temperature of the plating (302°) was determined from the steady-state

thermal process. The 1initial temperature in the given case is close to

the temperature of the adlabatic wall. The temperature of the plating

was determined for a polnt at a distance x = 0.1 m from the nose of

the cone. The emissivity of the plating was taken as €op = 0.8, the

taken as y = 2800.

TABLE 4.1.

Plating Temperature in the Case of Variable Flight Velocity

specific heat capacity was taken as ¢ = 0.224, and the bulk weight was

\ 3 » cex.
L Beantnsa n dopuyas M dop , Bpeun noxera » cex
W g | 5|0 |15 | 20]|25]%0|40]0]ew
Vam 42 + 36,95 Vy = (0,85:10~3 4 10~50)~1 ~ | 42| 626 810] 995 1180 | 1110 l 1052 | 952 870 800
. TMom2%v ~ [is f213 (275 [3.38 [e.00 [3,77 [3.57 (3,23 [2.95 fom
RO L1 . (1:52) 0,262 10,372 (0,481 7E.591 .700 [0,659 [0,624 (0,565 (0,516 |0,474
- j’-‘ B 2,001 (1 4 0,143/8'h) 4] -(1:53) o.1szolo.1oaso.om ,0840}0,0 ’:,08100,06250.0&550.08870.0921
VE NS08 +0,087 8¢ T | (1.55) 4,113 [2,843 (2,265 1,940 1,738 [1,800 1,871 (2,003 (2,142 2,200
R sin d, - 0,658 ro.m roass 0,332 0,299 {0,309 |0,321 p.m [0.367 0,391
- " -‘ - . 1 . .
pelp. =5 (TML sindd —1) (1.56) |1,00 11,03 1,14 1,30 [1,50 1,42 [1,37 |1,26 (1,203 |1,142
" telte =14 5Gelp. ~DI@dp +6) (1.57) {1,000 |1,021 |1,008 |1,206 |1,334 1,283 |1,251 [1,179 1,141 1,100
PilPa=1+0,7M (1.59) |1,208 {1,332 |1,481 [1.672 [1,890 1,807 [1,737 |1,624 [1,840 1,473
talte =1(PsIpa) (Pul PP . (1.58) [1,145 [1,200 [1,210 {1,200 {1,180 {1,187 |1,183 {1,200 {1,195 |1, 200
Plr e = (nalpe) (i) = [1145 |1,225 |1,328 {1,445 1,573 11,522 11,482 |1,415 1,365 (1,320
TTL = (lpa)i(nlra) —  |1.062 {1,000 1,118 1,158 1,200 1,185 1,170 1,150 1,130 1,115
M} =3((T [T)( +0,2M2) 1] 1.49) 1,9 13,75 }\.'ss r.zo 12,50 11,25 [10,20 la.w 7,10 le.w

1) Value and formula; 2) number

of formula; 3) flight time in seconds.
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The minimum Reynolds number Reg will be evident at the beginning

of the flight when the velocity is lowest. In thils case,
of the data given in Table 4.1, we will have:

Te==216,5-1,052=298; a=20) Ty =302
Vi=302.1,38 =416 m/secpy=152-10~%
0,1.416

- . ~8. mm———— R .
n=0,77-10~"% -Re'-o.'n.w-l 5,4:10%.

TABLE 4.2,

Determination of the Cone-plating Temperature

s

2 M 3 Bpeus nosera s cex.

on the basis

1 Beawnanua u ¢opuyaa dop-
‘ ) Nysuw| 0 5 10 15| 2| 25| 3

40 | 50

308,3] 326 | 370 | 428 | 466

Tos - — | %02 302

Ty=T.(TYT,); T.=216,5 — | 298| 236|242 | 250 | 260 | 257 | 254 | 249 | 245 | 242 | ~

7, = Ty (1 4 0,178M3) (1) 25| 3|50 | 658 836 770 | 726 621|553 | 05|~

T Ty 40,5(Ter~T)+0,2(T,~T;) |(1.6)| 282 304 | 334 | 378 | 442 | 455 | 462 465457 | 445 —
(Pr*)="5; Pr* mo dur. 1.1 ~ f1,26 [1,26 1,27 |1,28 1,28 [1,28]1,28]1,28|1,28|1,28 ) —

107 X me [1,49-10-7 (Th/(7* + 110)] X 107 |(1.3(1,80 [1.91 |2.04 |2.2¢ [2.61 | 2,56 | 2.58 | 2,60 L2.57 2,48 | —
0 = pa (Ty/T*) (1afp.); 0 = 0,01974 — |0,0182/0,0188/0,0190]0,0189/0,0183)0,0170/0,0161/0,0149/0,0144(0,0142] ~
108 X v == (*p*) X 108 (1.35)9,9 [10,2 [10,70 [11,85 | 13,7 [15,10 | 16,0 [17,45 |17,90 | 17,50] ~
Vim20M, VT, | = | 417 597|775 | 960 | 1140 | 1075 | 1015 | 915 | 835 | 768 | —

10=0 X Re® = (xV/+*) X 10-8 (1.2004,21 [5,85 [7,25 |g,30 8,32 | 7,13 | 6,35 | 5,25 4,66 4,39 | —
(Re*)=02 . — 10,0475/0,0445(0,0425l0,0415(0, 0413(0,0426{0,0435(0,0455/0,04610,0470| —

N ¢} o gur. 1.2 — 10,240 (0,240 (0,210 [0,241 0,244 {0,244 (0,244 10,244 (0,244 |0,2¢4 | ~

& = 0,29 (Re*)~03 (Pre)~"hpoc3 V, (1.31){0,0323/0,0433/0, 0552/0,0679/0, 0780/0,0709(0, 06 4210,05630, 05020, 0465 —

0a = a(Tr ~Tos) . (1.7) l0,0075(4,03 11,13 |27,5 | 36,3 | 24,2 | 16,08] 5,92 [1,025 |~1,30] —
- Ty = t0a8TSs (1.14)0,091 [0,001 0,088 J0,12 | 0,20 | 0,9 | 0.51 | 0,77 jo.875 | 0,88 —
ATog = (92 = gus) As/eT00 @49l o 63 [177 | 44 | 58 | 38 | 50 [165]05 |7 | =

4) according to Fig. l.2.
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Fig. 4.1. Plating temperature in
the case of variable flight velcc-
ity. (plating made of aluminum
alloy, & = 5 mm). 1) Te erature
of the adiabatic wall; 2) temper-
ature of the plating.

In the case of the obtained Reynolds number, the boundary layer
will be turbulent. Since, as the flight progresses, the Reynolds number
increases, it follows that the boundary layer will be turbulent for the
entire theoretical flight time.

The results of the calculation, given in Table 4.2, are repre-
sented graphically in Fig. 4.1. It is characteristic that the temper-
ature rise for the plating lags behind the temperature rise for the
adiabatic wall. This property 1is called thermal inertia and is deter-
mined by the heat capacity of the plating. The thermal inertia enables
us, during short-term heating, to use materials less heat resistant
than those which are required for extended heating.

In the case of flight at high altitudes, when the aerodynamic
heating is negligible or completely absent, Eq. (4.3) is simplified:
- cm[ - “] (4. 5)

If the magnitude of the absorbed radiant energy Q4 is constant
with respect to time, this equation is easy to 1ntegr£;e. Given the
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variable q,, Eaq. (4.5) should be solved by numerical integration.,
§4.2, TEMéERATURE DISTRIBUTION ALONG THE THICKNESS OF THE PLATING

When the thermal conductivity of the plating, or at least a
major part of it, 1s small, the method for determining the temperature
of the plating indicated in §4.1 may lead to very high errors. Ac-
tually, we do sometimes encounter conditions of aerodynamic heating
in which the lnner surface of the plating and the adjolning layers of
materials cannot be heated substantially when, at the same time, the
outer surface may already have a high temperature and may even be melt-
ing.

To explaln the heat-shielding, heat-resistance, and strength prop-
erties of the plating it i1s necessary to know the temperature distri-
bution along 1ts thickness, whille taking into consideration its thermal
conductivity and heat capacity. To do this we solve the Fourier equa-

tion (4.2):

T oer T
—= — .
ot oy?

The followling boundary conditions are assumed:

1) there is no heat transfer on the inner wall: consequently, the

temperature gradient on the inner wall should be zero:

ar
—_— ]
(oy)u= (4,6)
2) the heat transfer on the outer wall obeys Newton's law; the
heat-transfer coefflcient and recovery temperature are constant. In

this case we will have:

x(—g-):a(r,—ra)- (4.7)

This equation is a simplified version of Eq. (4.1) in which the

radliated and absorbed radiant energy are assumed to be zero;
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3) the initial surface temperature of the plating is, in general,
constant along the thickness.

Nozpanyunsii
cnod

»-.—-_.506 —_———
-3

Tan T

Fig. 4.2. Diagram of tempera-
ture distributlon along the
thickness of the boundary
plating. 1) Boundary layer;
2) plating.
In the integration of the Fouriler equation we will, for the most
part, observe the method indicated by A. V. Lykov [14]. Let us intro-

duce the dimensionless relative temperature

— T'—'T
o_ T'_To * (40 8)
where T 1s the temperature 1ln any layer of the plating. Let us also

introduce the relative coordinate

=
t e (4. 9)
For symbol denotation see Fig. 4.2. The Fourier equation (4.2)

for the relative temperature and relative coordinate will be:

N e
P T ‘ (4.10)

Let us find the particular integral of this equation in the form

0= XZ,

where X 1s only a function of ¥, while Z 18 only a function of 7, l.e.,

X=X Z=2Z(s).
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Substituting the expression for B in Eq. (4.10), we get

_(!_Z_.ZH a 4’X o

de ’ ¥, a3’
Since the right and left sides of this equation are independent

(they are functions of various independent arguments), evidently, each

side should equal the constant B, i.e.,

dZ a 42X
—_—l=f -—--—:X=B
ds 1Z=B; 83g de3

Let us integrate the first equatlion. Designating the value of Z
as Z0 for v = 0, we obtaln

Z=2Zpet". (4.11)
Let us designate
Baﬁ,_

B —
Then the second equation will be

X 4 v

a$+kX“Q

The integral of this equation
X=cletﬁl+e'e‘-k‘l.

Condition (4.6) gives:
ax
(G k="
consequently,

C.=—"c’.

Let us designate the value of X as Xl for £ = 1, then

T |
X,==2C,-‘-‘-ii-——==2c|cotk,
whence
cl--—l——!.-'-
2 cosh’
consequently.

.

Xt
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The value of 8 may now be expressed in the following form

X,z R cos (kE) el
1= (22 o8x o () = g 2L
(cOsk cos (K1) ==0cyq cosk

where 1t 1s denoted that

X\ Zy=9.,.
Here esto 1s the relatlve temperature of the outer surface for
T =0,
Let us express the value of B in terms of k; then

Bt= _kz av
8
06

The expresslon in this equation

=g, (4.12)
is the Fourier similarity criterion. This criterion 1s the fundamental
quantity determining the temperature of a body in a nonsteady-state
thermal process.

Expressing 6 in terms of k and the Fourler criterion, for the

particular integral of Eq. (4.10), we will obtain

b=, cos (£) 427 . (4.13)

cosk

The value of k in Eq. (4.13) is determined from the boundary con-
dition (4.7). Using Expressions (4.8) and (4.9), we represent this

condition in the form

(Ge)o= =P (. 14)
where
while B 1s the Blot number
p=ale, (4. 15)

Differentiating (4.13) with respect to £:

N_ e sin(kE) e~ ¥ ? .

ot 0. cosk
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Substituting this equation into Expression (4.14) and taking into
consideration the fact that when ¢ = 1, 6 = est, we will derive the

following equation in which Eq. (4.13) will have been taken into con-

sideration:

kig k=p. (4. 16)
This equation is useful for determining k. Since tan k is a perilodic
function with the period m, k will be a multivalued function. Equation
(4.16) 1s transcendental and cannot be exactly solved analytically. We

wlll deal with the practlcal determination of k below.

The total Eq. (4.10) integral can be a linear function of the par-
ticular integrals glven by Eq. (4.13). If k, 1s a value of k, from Eq.
(4.16), the total integral of Eq. (4.13) will be:

L X ]

b= Z A, cos (k,t) e—k: ", (4.17)

where the constants esto/cos kn are 1lncluded 1n the coefficients of

the series An‘

The values of An are determined from the initial conditions at

T = 0. Let 6, = £(¢) at the initial instant of time; then

A= N

b= 3 A,cos (B )=/ (t).

R=—e

Let us multiply both sides of this equation by cos (kme)de and

let us integrate the new equation obtained within the limits of change
in € from O to 1:

ot 1

X 4, cos(k,%)cos (k) di= j 7 (¢) cos (R t) k.
0

A-a—e

(4.18)
Replacing the derivative of the cosines by the sum of the cosines

and integrating, we obtain: \

1 .
=5cos (k%) cos (%) ds--;-j[cos (ky— ko) +cos (k, + ko) dt =

1 [sin(Rs— bw) . 8in(ke +Au)]
T2 | k- ka ket by
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Taklng into consideration the fact that

sin(ky—km)] __
“"’*.,.»*,.[ Hialhe = be) k,..”'] 1,

! 1 sinor).
’“—{(1 tg sin2 ")
Where k  # +k , using Function (4.16), we will obtain:

1 .
I=-;:-:_T:- (kqsin by cos i, —k, sin k,, cos k)=

5 _E Y (cos &, cos &, ~—cos &, cos £,)=0.
mn .

Consequently, in the series of Expression (4.18), of all the
terms only two remain, for which kn = km and kn =-—km; Expression
(4.18) will, in this case,be written in the following way:

i
1 2k, n
~2—A,(1+°—;‘—kn-)+ ; _“(1+‘""-’” _!f(%)cos(k,,&)de.

Hence

4sink, 4!
A"+ A'” 2k, -+ 8in 2k, sin k,. ff(E) cos (k E) ¢

When km k only one term remalns in the serles of Expression
(4.18):

—;—-Aa(l ""”"' Jj(&)cos(k,,!)dé

whence

. Asink ko
A= 2"0: :ln 2%, sln k 5’ () cos (k) dt.

The total 1ntegra1 in (4.1/) may now be represented in the
following form

R
_ 4sink ~43 p
"= 2y puaan, O (D€ f 7 () cos (k) .

Here we take into consideration the fact that k = and that cos
(kné) is the even function. This is the final expression for the re-

lative temperature.
For the sake of convenience we will assign the subscript "1"
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rather than "O" to the first term

B,— _ftnky (&.20)
2k,,+sln2k,
t, -mjf(e)cos(k t)at, (4.21)
then
0= Bl cos (k) e, (4.22)

The value of the coefficlents Bn should be determined while tak-
ing into consideration Eq. (4.16) which determines the coefficlents

kn. The first value of k. corresponds to the value of the angle in

1
the flrst quarter of the circumference; the second value corresponds
to the angle in the third quarter, etc. Thus the range of the values

of kn wlll be:
0<h<gn " <h<3n W<h<Tn

The values of Bn corresponding to these values of kn will agree

with Formula (4.20):

1< 8,< 1,978 0> B,>—0,425, 0< B,< 0,255

The values of Cn are determined for the most part by the functlons
(&), and also by the values of the coefficlents k,. At constant tem-
perature along the width of the plating at the beginning of heating,
the functions 6 = f(€) = 1 and { = 1. If the temperature in various
layers of the plating 1s higher than the temperature of the outer sur-
face at the beginning of heating, £(¢) < 1 and, consequently, cn < 1.

Table 4.3 gives the values of the first three coefficients k>
while Table 4.4 gives the values of the coefficients Bn obtained from
the work of A, V. Lykov ([14], pp. 155 and 160).

- 98 -



Since £ = 1 for the outside surface,

A=

= L
Oy = ZB,,C,, cos ke, (4. 23)

ftam)
For the inside surface &€ = O, f(&) = 1, and ;n = 1; consequently,

b BB (4. 24)

In the majority of cases, for calculation of 6 from Formulas
(4.22) (4.23) and (4.24), 1t is entirely permissible to take three
terms of the series, since the serles for 6 converges rapidly.

Formula (4.22) can be used to calculate the temperature distri-
bution along the thickness of the plating and when a and Tr are vari-
able. In this case the given heating or cooling times for the plating
are subdlvided into ranges such that within these ranges the change
in a and Tr is comparatively small. Within these ranges it 1s assumed
that o and T, are constants and Formula (4.22) 1s used. Let us note
that if Tr 1s variable, 6 at the end of the preceding range does not
equal the value of 6 in the beginning of the subsequent range. This
is explained by the step-wise nature of Tr'

Formula (4.22) did not take into consideration the radiation of
the plating. It should be noted that in a nonsteady-state aerodynamic
heating regime far from temperature equilibrium, the effect of the
radiation heat on the temperature regime of the plating is not great.
Consequently, in this case, the radiation heat may be calculated ap-
proximately by introducing the equilvalent heat-transfer coefficlent:

G =2 —qu/( rr"' Tct)'

Since qiz/('l‘r-—- 'I‘st) is variable, the calculation taking the
radiation into consideration should be carried out in the same way as

that of the varlable heat-transfer coefficlient, i.e., by dividing the
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flight time into intervals.
At a wall temperature close to equilibrium, the radiation effect
may be taken into consideration 1f we represent the speciflic heat flow

involved in the heating of the plating in the form

Quar =2 ( T,— Tcr) - EOTQ,-: %ot (Tpnu ~Te)s

where Travn 1s the equilibrium temperature and determined from equa-

tion
" (Tr"' rl‘luu) - “T:”" =0.

Calculating the latter formula from the preceding and factoring

4 4 :
Travn - Tst’ we get:

T T T:
- l r — (44 ( <r )]'

e+ ) )1+
For materials with low conductivity, for example, heat-insulation
materials, after a short heating period, Tst gets very close to T

ravn

and consequently in the latter expression we may assume Tst/T =~ 1,

ravn
then

a,,za[1+4(_’:__. )]

Toasn
We can sometimes be limited to one term of the series for 6.
Actually, in this case when B € 0.1, the second term of the serles
will be less than 2% of the first, while the third will be less than
0.5% of the first. For ¢ > O, the relative values and the second and
subsequent terms will be even lower.
For B € 0.1, we can assume 1n approximate terms

tgkl zkh

2
then kl = B and k1 = B,

The error in the determination of kl under this assumption will
be less than 1.6%. In this case
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kloe=Bop=

at
e G

L T3 § % )
TABLE 4. 3.
Values of Coefflclents kn
(k, tan k = B)
B 0 [ 0,001 | 0,002 | 0,004 ’ 0,006 0,008 0,01 0,02 0,04 0,06
& 0,0000 | 0,0316 | 0,0447 { 0,0632 0,0774 0,0893 0,0998 0,1410 0,1987 0,2125
2 3,1416 | 3,1418 | 3,1422 | 3,1429 | 13,1435 3,1441 3,1448 3,1479 3,1543 3,1606
&3 6,2832 | 6,2833 | 6,2835 | 6,2838 | 6,2841 6,2845 6,2848 6,2864 6,2895 6,2027
B 0,08 0.1 0.2 .| 0,3 0,4 0,5 0,6 0,7 0,8 0,9
k) 0,2791 | 0,3111 | 0,4328 | 0,7218 | 10,5932 0,6533 0,7051 0,7506 0,7910 | 0,824
ko 3,1668 | 3,1731 | 3,2039 | 3,2341 | 13,2636 3,2923 3,3204 3,3477 3,3744 3,4003
kg 6,2959 | 6,2001 | 6,3148 | 6,3305 | 6,3461 6,3616 6,3770 6,3923 6,4074 6,4224
] 1,0 1,5 2,0 3,0 4.0 5,0 6,0 7,0 8,0 9,0
&y 0,8603 | 0,9882 | 1,0769 | 1,1925 | 11,2646 1,3138 1,3496 1,3766 1,3978 1,4149
ke 3,4256 | 3,5422 | 3,6436 | 3,8088 | 13,9352 4,0336 4,1116 4,1746 4,2264 4,2694
ky 6,4373 | 6,5097 | 6,5783 | 6,7040 | 16,8140 6,9006 6,9924 7,0640 7,1263 7,1806
8 10 15 P 0 40 50 60 80 100 0
I8 1,428 | 1,4729 | 1,4961 | 1,5202 | 11,5325 1,500 1,5451 1,5514 1,5552 1,5708
h@ 4,3058 | 4,4255 | 4,4915 | 4,5615 | 4,5079 4,6202 4,6353 1,6543 4,6658 4,7124
7,2281 | 7,3959 | 7,4954 | 7,6057 | 7,6647 7,701 7,7259 7,75713 7,7764 7,8540
wnere we designate
163806"7,“
(13 is the time constant of thermal inertia).
When B < 0.1, we may also simplify Expression (4.20) for B,.
Assuming k1 =~ 8in kl, we obtaln:
) S 2
P t sk T+cosyd
With the assumptlon made, & may be represented in the form
=208 (VBE) g=heeg,
T Tcs VB (4.25)

In the case of equilibrium temperature distribution along the

thickness of the plating, when 7 = O, 51 = 1, and consequently,

—2cos (VBE) e,
1+cosV'F

where B 1s determined from Formula (4.15).
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TABLE 4.4,
Values of Coefficients Bn

4sin Ry
. LL/ T -3
(Ba Ok, +-sin 2, kn ‘g,i"_'_l)
B | o | ooor | 0002 | o004 0,006 0,008 0,01 0,02 0,04 0,06

B, 1,0000 | 1,0002 | 1,0004 | - 1,0008 1,0012 1,0015 1,0016 1,0030 1,0065 1,0099
By 0,0000 {~0,0002 |~-0,0004 { —0,0008 | ~0,0012 | —=0,0016 | —0,0020 | =0,0040 | —0,0080 | —0,0119
83 0,0000 | 0,0000 | 0,0001 0,0002 0,0003 0,0004 0,0005 0,0010 0,0020 0,0030

B 0,08 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

B, 1,0130 | 1,0159 | 1,0312 1,6450 1,0581 1,0701 1,0813 1,0018 1,1016 1,1107
B, 1~0,0158 |—0,0197 |—0,0381 | ~0,0555 -0,0719 -0,0873 —0,1025 -0,1154 —0,1282 | ~0,1493
By 0,0040 | 0,0050 { 0,0100 0.0148 0,0196 0,0243 0,0289 0,0333 0,0379 0,0423

B . 1,0 . 1,5 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,6

B, 1,1192 { 1,1837 | 1,1784 1,2102 1,2287 1,2403 1,2478 1,2532 1,2569 1,2598
B, |-0,1517 {~0,2013 |—0,2367 | —0,2881 -0,3215 -~0,3442 -0,3604 ~0,3722 | —0,3812 | -—0,3880
B, 0,0466 | 0,0667 | 0,0848 0,1154 0,1396 0,1588 0,1740 0,1861 0,1959 0,2039

B 10 15 20 30 40 50 60 80 100 ©

By 1,612 | 1,2677 | 1,2699 1,217 1,272 1,2727 1,2728 1,2730 1,2731 | 1,27132
B, [—0,3934 |=0,4084 |—0,4147 | —0,4198 | —0,4217 |*==0,4227 | -0,4232 -0,4237 -0,4239 | ~0,4244
8, 0,2104 | 0,2320 | 0,2394 0,2472 0,2502 0,2517 0,2526 0,2535 0,2539 0,2546

To evaluate the accuracy of Formula (4.26), Table 4.5 gives the
errors which result from this formula in comparison with the exact
Formula (4.22) with a constant initlal temperature along the thick-
necs of the plating.

It is apparent from Table 4.5 that the accuracy of Formula (4.26)
is determined not only by the value of B, but also by the relative
heating time 1/18. At 'r/'rB = 0, Formila (4.26) produces the greatest
error. However, these errors are substantially reduced when 'r/'rs = 0O, 01,

Formula (4.26) may also be used for B » 0.1, if in this case,
'r/'rs is sufficiently large. For example, 1n the case of B = 0.2 and
©/7g = 0.1, there are few errors.

It is apparent that the accuracy of Formula (4.25) will be approx-
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imately the same as the accuracy of Formula (4.26).

TABLE 4.5

Accuracy of Formula (4.26) 0= 2008 (V) o,

T 14cosVB

9B|g.r(a=0) 0cr (E'-"'-‘,)

£ ——

P B 1o no  {oumbka no no | ownbka
(4. 26) (4.22) 8 % (4. 26) (4.22) B %
0 0,05 1,012 1,000 +1,2 0,989 1,000 ~1,1
0 0,10 1,023 1,000 +2,3 0,975 1,000 -—2,5
0 0,20 1.050 1,000 +5,0 0,947 1,000 -5,3
0,01 0,05 1,002 0,997 +0,5 0,977 0,976 40,1
0,01 0,10 1,013 0,999 ~+1,4 0,963 0,965 -0,2
0,01 0,20 1,040 1,000 |~ 43,6 0,938 0,953 -1,6

0,10 0,05 0,918 { 0,917 +0,1, | 0,895 | 0,895 0
0,10 0,10 0,928 | 0,921 +0,8 0,883 | 0,879 +0,5
0,10 0,20 0,950 | 0,940 +1,1 0,860 | 0,854 +0,7

1) Error, in &.

In the case metal plating, B in many practical lnstances of aero-
dynamic heating will be less than 0.1 and consequently to reduce the
amount of calculation while determining 6, we may use Formula (4.25)
and (4.26) in these cases.

§4.3. THE CRITERION OF THIN PLATING

§4.1 gave a solution of the heat-conduction equation on the
assumption that the plating was so thin that the temperature differ-
ence across its thickness was insubstantial. The question naturally
arises, when can plating be consldered thin; in other words, we must
establish a criterion for thin plating.

Since the temperature difference across the thickness of the
plating never equals zero, for all practical purposes it is necessary
to establish the permissible difference at which the plating may be
considered to be heating uniformly. We will characterize the heating
equilibrium of the plating by the relation of the temperature incre-

ment of the inner plating surface to the temperature increment of the

- 103 -



of the outer surface, l.e.,
AT, JAT,.
Let us introduce the concept of a relative temperature difference

across the thickness of the plate and designate 1t as ¢ in which case

p!
=er =Ty ATy
‘o ATer ! ATey (4.27)
Let us express the relative temperature of 6 in terms of the

temperature inerement, using Formula (4.8):

g Te=T (AT .
Tr—T, Tr—Tg °

where AT = T — TO,
hence
AT =(1~0)(T,~T,).

Consequently,

= _(l"'onn) == (ﬁin""ct)_
=1 (1—08cq) (1—20¢) : ) ('4. 28)

Assuming the values of the permlsslble relative temperature
difference sp, from the latter equation we can find the plating thick-
ness at which this temperature difference may be obtalned, Evidently,
thicknesses less or equal to that found will correspond to thin plat-
ing.

Since it 18 necessary to have an approximate solution for the
eriterion of thin plating, we can derive it from approximate functions.
For thin shielding, the Fourler criterion, as can be seen from what
follows, 18 ¢ > 1. Consequently, in the expression for the relative
temperature (4.22) it 18 entirely possible to limit ourselves to one
term of the expansion. For lo; values of B, as was shown in §4,2, we

2

may assume that kl = 3, In addition, the value of the coefficient B1

according to Formula (4.20) may be assumed to be
ByAk,|(2k, +2k) =1
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Then, with the assumption that {, = 1, Formula (4.23) and (4.24)
may be represented in the following form

0.,=cos V@-e—"; 0= e~br,

The relative temperature difference may now be represented in the

form

- (1—cos Y F)ePr
1—cosYpe P

At low values of S we can expand the functlons cos J B and é'6¢
in serles and 1imit ourselves to two term of the expansion, l.e., we

may assume
cos VB=1 -—;—P; ePr=1—Bo. (4.29)

Then

B (1 —E9) 1 1—B¢

1 21 1,
1~(1=58)0~8n G ry—ybe

=
N‘—

Hence

pm— =0 1= -
T

At low values of B we may assume

then

=1 (—)
= e (4.30)
Taking into consideration f with respect to Formula (4.12), we

obtain;

8°°=V 2“1 b .
(1—2)

Consequently, we may assume thin plating to be that plating at
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which

u< ) et (4.31)

It should be borne in mind that this criterion of thin plating
is applicable 1n cases in which the values of B are low, l.e., those
values at which the above approximations for kl’ cos y[E.and é'kim
are permissible, and this with a sufficient degree of accuracy.

With a view to comparing Formula (4.30) with the accurate solu-
tion, Fig. 4.3 glves the graph constructed from the results of exact
calculation for ¢ with respect to B where ep = 0.1, It 1s appararent
from this graph that for f < 0.1, the value of ¢ from Formula (4.30)
is sufficlently close to the exact value. At high values of B, the
value of ¢ drops, so that for B > 10 we can assume ¢ ~ 1 for g_ = O.1.

P
In this case:

3 < Var. (4. 32)

In the general case

at

b5 S ‘?" (4. 33)
This formula may be used together with the graph given in Fig.
4,3, from which we determine the value of @ at ep = 0. 1.

When B > 10, ¢ may be determined from the following formula

=0,9331g(l%.7—3-). (4. 34)

The latter formula was found from the condition B = w.

For metals, B 1s generally of the order of 0.1 and less; conse-~
quently, we may use Formula (4.31) as & criterion of thin metal plat-
ing. For laminated plates, the thermal conductivity is less by a
factor of a hundred than in the case of metals; consequently, B will

be substantially lower in the case of metals, and so for lamlnated
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plates and, in general, for plastic, we

] should use Formulas (4.33) and (4.34).
Y ’ If the heat-transfer coefficlent 1s
3 NG small (@ < 0.1), then in the case of plas=-
2 \(2 ] tic the criterion of thin plating should be
\\N~__ . determined from Formula (4.31).
’ V ’ As far as ceramic materials are concerned,
v

a
oor a1 10 10 100 “oop their thermal conductivity 1s lower by & fac-~

Flg. 4.3. Graph of the tor of only ten than in the case of metals,
Fourier criterion for

thin plating with a re- and consequently the value of ¢ will be some-
lative temperature 4if-

ference of ep = 0,1, 1) where between the values for metals and lam-

From the following for- inated plates. These values of ¢ should be

mula

o= (1- ep)/2€p5 determined from graphs analogous to that given
2) from exact calcula-
tion. in Fig. 4.3, or, if we want to be especially

cautious, we should calculate §_, from Formula (4.31).

Table 4.6 gives the maximum thickness values ol a thin plating for
various materlials where €y = 0.1. Metal and alumlnum-oxlide calculations
were carried out in accordance with Formula (4.31), while asbestos,
glass, and laminated plastic calculations were carried out in accord-
ance with Formula (4.32).

The thermal conductivity of metals in Table 4.6 was determined at
200° C.

§4.4. THE DETERMINATION OF THE THICKNESS FOR HEAT-INSULATION PLATING

A number of materials with low thermal conductivity are used for
heat lnsulation. The required heat-insulation thickness in a steady~
state thermal process is easy to find from Formula (3.4) in the pre-

sence of internal cooling;

ua_‘)‘usf;o:—' (4. 35)



TABLE 4,6,

Maximum Thickness Values of Thin Plating for Various Materials at
€ = Oolo
p

Npeneavnas seanynna

Teunepatypo= | rouvon obunskn B MM
Marepnan 1 NPOBORHOCT B i o:an
M2feex: {25 t=l'bp:ex. 1=l(')lg ':ZEI(.
g Amomunuil 8,7-10~5 14 44
7 Marunit 7,2:10-8 13. 41
Bepuaanit 5,9-10—5 11 36
8 Heaeso 1,5-10-5 5,8 18
c Craap 1X18HIT 0,42.10-5 3 9,6
10Turan 0,6.10~% 3,6 11
11Mou6zen 5,1.10~5 1 34
L2 Hukeas 1,4.10-% 5,6 18
23 Oxlg(l:]s amoMunus Al,03 npa 1000°C 6,2.10~7 1,2 3,7
Wb Texcroaut npu 20°C 1,5-10-7 1,2 3,8 ’
Crexao npy 200°C 5,9.-10~7 2,4 7,6
L6 Crexaorexcroant [6) 2:10~7 1.4 4,4
L1TAcGect, y=100 xz/u3 7-10~7 2,6 8,4

1) Material; 2) thermal diffusivity; 3) maximum size of thin plating,
in mm; %) where; 5) aluminum; 6) nesium; 7) beryllium; 8) iron;

9) steel 1Kh18N9T; 10) titanium; 11) molybdenum; 12) nickelj 13) alu-
minum oxide A1203 at 1000° ¢ [51]; 14) textolite at 20° C; 15) glass

at 200° C; 16) glass-textolite [6]; 17) asbestcc, y = 100 kg/m3.

The required insulation thickness is proportional to the thermal
conductivity and does not depend on 1ts heat capacity.

Porous and loose fibrous materials exhibit the lowest thermal
conductivity. Moreover, as the porosity and brittleness increase and
the weight of the material correspondingly decreases, the thermal con-
ductivity of the material approaches the thermal conductivity of air.
The thermal conductivity of asbestos, depending on the degree of its

looseness, will be (see [25]):

1 upny=500nwK2fud . ... ....... 2=2,5-10-% (1-}-0,0018 ¢)
e T=00 . e e A=1,8-10~5 (14-0,0022 )
e =100 . e A=1,5.10~5 (14-0,0027 ¢)

1) Where,
The thermal conductivity of air
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)==0,56-10~* (1 4-0,0030¢).

The porous and loose fibrous materials have very low mechanical
propertles and consequently can be used only for the inner facing of
the plating.

Among the heat-~insulation materials of great strength are certain
types of plasties and, in particular, laminated plastics. However,
thelr thermal conductivity 18 greater than in the case of porous ma-
terials. For example, textolite has a thermal conductivity (see [25])

A~ T+ 102 keal/m - sec - deg.

The ceramic materials are heat resistant and sufficiently strong
to be used for the outslide coating; however, they have even greater
thermal conductivity. For example, aluminum oxlde A1203 has, at 1000° C,
a thermal conductivity (see [51])

4 kecal/m . sec . deg.

A=6. 10"

In addition, ceramic insulation is very brittle and cracks easlly
under Iintense heating.

In a nonsteady-state thermal process, the required heat-insulation
thickness should be determined from Eq. (4.24) in the general case;
moreover, it is necessary to give the permissible temperature values
of the inner surface., However, the solution of this equation for ¢,
and later alsoc for Giz’ in the general case can be obtained only graph-
lcally or by interpolation, 1f the values of ¢ are given.

The temperature of the lnner surface can be assumed on the basis
of the relative temperature difference [see Formula (4.27)]. For ex-

ample, for practlical purposes 1n & number of cases the following would

be entirely acceptable.

AT“ — .
AT¢e =0
then
: e, =09,
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@3iven the value of Ep and knowing the value of est, we can de-~

termine the relative temperature of the inner surface from Formula
(4.28):

Q==ta 40, (1 —¢,).
For the glven equation we can limit ourselves to one term of the
series in Eq. (4.23) and (4.24).
Then at Cn = 1 (the constant temperature along the thickness of
the plating at the beginning of its heating)

8,./0,,==cos &,.

The calculation of exact values of est/evn and subsequent deter-
mination of the corresponding values of ¢ by successive approximations
indicates that in the case of the glven est/evn = CO8 kl’ the errors
will be at high values of sp. In reality, when ep increases, ¢ decreases
and where sp =1, o = 0. This is evident from the structure of Egs.
(4.23) and 4.24), and also from Table 4.7.

Assuming that for all practical purposes we scarcely need a value
of Ep greater than 0.95, we can calculate the errors for ep = 0,95
at various values of B. The relative errors in the determination of

the insulation thickness, assuming est/evn = cos k, are as follows:

1 3uavennus 8 l 0,1 I 1,0 I 10 ' 100

~OmKGK B ONpEaLICHHN TOANIKHE H30-
SoaAn B %

1) The value of B; 2) errors in the determination of the insulation
thickness, in 4.

Where ep < 0.95, there will be even fewer errors in the required
insulation thickness.

Assuming est/evn = co8 kl’ from the above-given value for evn’
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we find:

TRyt (4. 36)

@iving the value of €_, we can determine evn for the given value

of B from this formula. ’

The insulation thickness required to ensure the given relative
temperature difference can be determined, if we know the value of the
Fourler criterion;

then

w3 (5.37)

The value of ¢ can be calculated in the followlng way. Assuming
certain values of ¢, let us find the corresponding values of evn from
Eq. (4.24). Having determined the required value of 8,y from Formula
(4.36), we can find the sought value cf ¢ graphically or by linear
interpolation.

Table 4.7 gives the determination of values of ¢ for various
values of ep and B. We were limited to two terms of the serles in the
first three rows when we determined the values of 6 . from Eq. (4.24).
In the subsequent rows, the values of evn were determined from Formula
(4.36).

The value of ¢ was determined by linear interpolation; for B = 0.01
and 0.1, the value of ¢ was determined graphically.

The results of the calculations are presented graphically in Fig.
4.4, By using this graph, we can determine rather rapidly the required
insulation thickness.

It should be noted that the indicated method for the determination
of the insulation thickness was used formally under those condltions

in which Eq. (4.24) was found. If the values of T, and a are variable
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in flight, i1t 1s possible approximately to determlne the insulation

thickness by averaging 'I‘r and o with respect to time.
TABLE 4.7,

The Determination of the Fourler Criterion (@) at Various Relative
Temperature Differences

B 0,01 0,1 1,0 10 100 o2

0 &L ¢=0,1 |0,99987 | 0,9989 | 0,9919 | 0,9690 | 0,9496 | 0,9495
8 &t ¢=0,2 |0,99935 | 0,9939 | 0,9523 | 0,8295 | 0,7795 | 0,7720
04 &€ ¢=0,3 {0,99851 | 0,9850 | 0,8915 | 0,6745 | 0,6144 | 0,6065
cos by 0,995 |[0,95 | 0,652 | 0,1413 | 0,0158 | 0
0,99880 | 0,9877 | 0,9199 | 0,8230 | 0,8030 | 0,8000

%a=0.80 { ? 0,272 10,275 | 0,253 | 0,204 | 0,18 | 0,184.
sgma0,85 [o.,. 0,99912 | 0,99125 | 0,9423 | 0,8685 | 0,8522 | 0,8500
¢ 0,225 0,237 |o0.216 | 0,172 | 0,57 | 0,156
=090 {a., 0,99950 | 0,99470 | 0,9528 | 0,9130 | 0,915 | 0,9000
? 0,175 0,184 | 0,174 | 0,140 | 0,1283 | 0,1280
40,95 ( fay | 0,99974 | 0,99748 | 0,9820 | 0,9567 | 0,9506 | 0,9500

0,130 0,135 0,125 0,109 0,099 0,097

-

To 1llustrate the method for determining the required insulation
thickness, as an example, let us determine the required glass-textolite
thickness for the plating of the instrument bay of & cone subject to
intense aerodynamlic heating for sixty seconds. Let us determine this
thickness for the initial data corresponding to the example considered
in §4.1.

It 1s necessary to assure a temperature for the lnner plating
surface that is not higher than 80° C.

Let us initially determine the temperature of the outer surface
which, due to the low thermal conductivity of glass~textolite, can
approximately be assumed to be equal to the instantaneous equilibrium

temperature, understanding by the latter the temperature at which

4=Gns
Let us find this temperature by successive approximations, using

Table 4,2. For T = 20 sec.:
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1 3anaevcs Ter 750 750 779 778

o Haxoanm ¢, 6.71 4,37 4,45 4,52

3 HaxoauM ¢y 3,85 4,50 4,48 4,46

1) aiven T ; 2) let us find qg; 3) let us find
Hence, 1t 1s apparent that at 7 = 20 sec., T . = 779° K. Similarly,
let us find: for T = 60 sec., Ty, = 490° K.
Let us averége the wall temperature with respect to time, assum-
ing that the linear change of Tst 18 in the time intervals from O to 20

sec. and from 20 to 60 sec.:

302 4 779
(Tcr)cp= 2; '"3%‘+7l’1;;‘}‘?—0-%=604°}(.

Consequently, the temperature increase for the outer surface
AT, =604° —302°=302%;
the temperature increase for the inner surface according to the condl-
tion
Af, =353° —302° =51°,

The relative temperature gradient

t=1— 3%‘—2= 0,831.

Averaging o with respect to the temperature:

=0,0323 4-0,0780 20 , 0,07804-0,0465 40
o : B4 ! . S ==0,0598.

To determine the value of B, a rough estimate of the plating thick-

ness 6ob = 5 mm is assumed; then

_abos __0,0508-0,005 _
P = = 42T

From Fig. 4.4 we willl find that ¢ = 0.202
Consequently, according to Formula (4.37)
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=0,0077 .

— e
805 = ]//5;—'= 1/2-10-7- 0

Let us make the second approximation, making the value of B more pre-

clses

g 0:0598-0,0077

7108 =6,57.

From Flg. 4.4 we find that ¢ = 0.192, and consequently,

3, = .10~7. %0 _
06 1/2 10 0.192 0,0079.

It is apparent from the calculation that the effect of B on the
result 1s insignificant. It should be noted that the scale of the axis
of abscisses in Fig., 4.4 18 logarithmic and encompasses a range of
change in B from 0.0l to 1.00 (by factor of 10,000). Because B has
little 1nfluence on the result of the calculation, we need not deter-
mine the value of a in the value of B with great accuracy.

The heat-insulation calculation given is based on the assumption
that the temperature of the outer surface is equal to the lnstantaneous
equilibrium temperature.

In fact, the temperature of the outer surface and, consequently,
the obtalned insulation thickness is somewhat increased. On the basis
of the obtalned data, we can determine the temperature of the outer
surface and make more preclse the required insulation thickness.

For B = 6.57, from Tables 4.3 and 4.4 we find: k, = 1.36,

1
k2 = 4,14, B, = 1.25, and B, =—0. 366; consequently where ¢ = 0.192

from Eq. (4.23) we finds

84, = 1.25°0.2108 0355 | 0.366-0.5446 6328 _ 0.1850 + 0.0075 =

= 0,1925.
To calculate the radiation we assume that the temperature of the

adiabatic wall i1s equal to the equlilibrium temperature; then we obtain:

To—Ter 604=Ter 0 1995,
T,—To 604—302
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hence T , = 546° K. Consequently, AT, = 546 — 302 = 244 and

n AT, —‘248=0'799'

From Fig. 4.4 we find ¢ = 213; consequently

3 1/ 9.10-1. 0 _ -
Uyg == 2.10 0.2 =0,0075 #=7.5 ux.

Consequently, the temperature taken equal to the equllibrium
temperature produced an error of +5% in the determination of the heat-

insulation thickness.

ot

’ o _ %y
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' \ == at
?=,

024 - AT
Eq=t- AT“

CT}

020 o
\~ \ €n=080
L o —

a1 \ \ En=08

\r__+

W

a4
]

TS

€4 =095
qoe N
- @ 10 1w W ~p

Fig. 4.4. Graph of the Fourler
criterion at various relative
temperature differences.

We can approximately estimate the value of the Fourier criterion

from the following formula
1,1
According to this formula, the error in the determination of the
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thickness for £y > 0.8, will be less than 12%.

According to this formula, for the above-consldered example

— ‘D‘ =
p=17lg 0.198 0,238.
Consequently
36 ="0,0071 u,

i.e., the error is 5%.

When selecting the heat-insulation material, given satisfactory
mechanical strength properties and physical (adhesion, breakdown tem-
perature) properties assuring the possibility of its use under the
glven conditions, 1t 18 necessary to evaluate the feasibility of
using a given material wlth respect to welight.

Formula (4.37) makes it easy for us to compare the various ma-
terials wlth respect to weight in a nonsteady-state thermal process.
In reality, the weight of 1 m2 of the sheet materlal for the required
heat-~insulation thickness will be:

el VY

The value of 7/¢ 1s in the main determined by external conditions,
and this is apparent from Formula (4.38). Consequently, the weight
criterion, depending on the physical properties of the materlal and
proportional to the welght of the required insulation, will be

N
¢

Table 4.8 gives the value of this criterion for certain heat-
insulation materials.

Table 4.8 gives three groups of material: ceramic insulation,
laminated plastics, and porous insulation (including loose fibrous

insulation). Within each group, the heat-insulation materials have
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welght criteria which are comparatively close, However, the welght
criteria of materials from various groups differ greatly.

Porous materials possess the lowest welght criteria, but because
of the low mechanlcal properties, they can be used only for internal
insulation.

It should be noted that the thermal conductivity of porous mater-
ials increases substantially as the temperature increases; consequently
the insulation should be calculated at an average temperature. Table

4,8 gives the thermal conductivity of porous materials at 200° C.

TABLE 4. 8.
Ideal-Weight Criterion for Certain Heat-insulation Materials
Mpezeas-

1 A 1 ¢ o u:‘:: tem- | Jlutepa-
Marephaa KKaa o]t kKA ‘/ _;-‘ ";’;ﬂ'g‘ Typunfl
M-cex-2pad K2-2pad 2Hegl&lﬂ “c?qu HK

L Okucy amomunna 6.10~4 3200 0,30 2,5 2000 [61}

> Oxuch mupxonus | 2,1.10~4 | 4400 018 | 2.3 | 200 151)

6 Texcroanr 0,7.10—~4 1350 0,35 0,52 250 {25]

7 Crexaorexcroanr | 0,7.10—4 1600 0,24 0,69 300 {6}

Acbecrosnft kap- | 0,44-10~4 | 1000 0,20 0,47 450 [ 25)

8 “ron '

9 ®roponaacr 0,59-10—-4 | 2200 0,25 0,72 400 (32]

1.0 Ac:‘:;r pacnywen-| 0,22-10-4 | 100 0,20 | 0,105 | 600 (25)

21 Munepassnan saral 0,18-10~¢ 150 0,22 0,110 600 (25}

1n Crexaosoaoxuo 0,26-10~4 120 0,20 0,125 450 125]

= (marm) :
13 nenocrexao 025.10~4 | 200 0,20 | 0,160 500 125}

1) Material; 2) temperature limit of application, in °C; 3) literature
source; 4) aluminum oxide; 5) zirconium oxide; 65 textolite; 7) glass-
textolite; 8) asbestos cardboard; 9) fluorine sheet; 10) loose asbestos;
11) mineral cotton; 12) fiberglas (mat finish); 13) foam glaass.
Ceramic insulation possesses a weight criterion several times
greater than the criterion for laminated plastics, but 1t has a higher

breakdown temperature (melting). It is true that the temperature ad-
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vantages of ceramic insulation cannot always be used, since the cer-
amic insulation may crack during intensive heating (thermal shock).

Like outer heat insulation, laminated plastics possess good
welght qualities and have a comparatively low breakdown temperature.
It should be noted that in Table 4.8, the practical temperature limits
of laminated plastics correspond to the long-term effect (many hours)
of high temperature. In the case of a short-term effect (seconds and
single minutes), the permissible operating temperatures for laminated
plastics may be substantially lncreased.

In the case of a single short-term effect, the lamlinated plastics
may even be used at alr temperatures of several thousand degrees; it
is true, of course, that 1n this case the upper layer will be subject
to erosion and sublimation, so that with time the thickness of the
plate will decrease. In addition, 1t should be borne in mind that after
this removal of metal the remalning thickness of the plate wlll have
a carbonized upper layer, while the layer beneath will be broken down
(cracks, folliation).

For example, in tests of glass-~textolite 1n a plasmatron stream
formed at normal atmospheric pressure, the loss rate depended on the
temperature of the stream and ranged from 0.033 to 0.8 mm/sec.; in this
case the temperature range was from 2000 to 13000° K [45]. For the
temperature range 2000° K < T < 6000° K, the loss rate was almost
linearly dependent on the temperature and consequently the thickness

of the loss can be represented in the form
3,,=(1,175- 10T — 0,205) « xx. (4.39)
The thickness of the carbonized layer and damage to the glass-

textolite structure depend on the loss rate (see [45]) and for 3300° K
< T £ 6000° K may be expressed by the formula
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=l k.
e L3

b1

For T < 3300° K, the value of 6pv begins to drop.

Manu-

script

Page
No.

86
86
87
87
92
100
100
107
107
113
118

(IList of Transliterated Symbols]

Tr = Tst = Tstena = Twand
9% = 91 T Y%ychistaya ~ 9radiant
b6 = Tob = Tobshivka = Tplating

%ar T 9nag T %nagrevaniye = %heating
BH = vn = vhutrennyy = inner

paBH = ravn = ravnovesiye = equilibrium

ep = ef effectlive

effecktlvnyy
radiated

us = 1z 1zluchayemyy

ox = okh = okhlazhdeniye = cooling

]

cp = 8r srednyy = average

ugar = loss

yr = ug
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